Search results

1 – 6 of 6
Article
Publication date: 20 March 2017

Morteza Vatani and Jae-Won Choi

This work aims to present a guideline for ink development used in extrusion-based direct-write (DW) (also referred to as direct-print [DP]) technique and combine the extrusion…

1171

Abstract

Purpose

This work aims to present a guideline for ink development used in extrusion-based direct-write (DW) (also referred to as direct-print [DP]) technique and combine the extrusion with instant photopolymerization to present a solvent-free DP photopolymerization (DPP) method to fill the gap between 3D printing and printing multi-functional 3D structures.

Design/methodology/approach

A DP process called DPP was developed by integration of a screw-driven micro-dispenser into XYZ translation stages. The process was equipped with direct photopolymerization to facilitate the creation of 3D structures. The required characteristics of inks used in this technique were simulated through dispersion of fumed silica particles into photocurable resins to transform them into viscoelastic inks. The characterization method of these inks and the required level of shear thinning and thixotropic properties is presented.

Findings

Shear thinning and thixotropic properties are necessary components of the inks used in DPP process and other DP techniques. These properties are desirable to facilitate printing and filament shape retention. Extrusion of viscoelastic inks out of a nozzle generates a filament capable of retaining its geometry. Likewise, instant photopolymerization of the dispensed filaments prevents deformation due to the weight of filaments or accumulated weight of layers.

Originality/value

The DPP process with material-reforming methods has been shown, where there remain many shortcomings in realizing a DP-based 3D printing process with instant photopolymerization in existing literature, as well as a standard guideline and material requirements. The suggested method can be extended to develop a new commercial 3D printing system and printable inks to create various functional 3D structures including sensors, actuators and electronics, where nanoparticles are involved for their functionalities. Particularly, an original contribution to the determination of a rheological property of an ink is provided.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Matthew P. Watters and Michelle L. Bernhardt

This paper presents findings from a study examining curing procedures to improve the compressive strength and hardness properties of specimens while maintaining surface quality…

Abstract

Purpose

This paper presents findings from a study examining curing procedures to improve the compressive strength and hardness properties of specimens while maintaining surface quality. All specimens were created from a standard grey, acrylic-based photopolymer and fabricated using stereolithography technology. This paper aims to investigate the effects of printing layer thickness and print orientation on specimen compressive strength, as well as the effects of thermal and light curing methods. In addition, the post-print curing depth was investigated.

Design/methodology/approach

The effects of layer thickness and print orientation were investigated on 10 × 20 mm cylinders by determining the ultimate compressive strength once cured. The compressive strength of cylinders subjected to varying thermal and light settings was also investigated to determine the optimal curing settings. The effective depth of curing was investigated on a 25.4-mm cuboidal specimen, which received both thermal and light curing.

Findings

To achieve the highest compressive strength, specimens shall be printed with the minimal layer thickness of 25 µm. Increasing temperatures up to 60° C during curing provided a 0.75-MPa increase in compressive strength per degree Celsius. However, increasing temperatures above 60° C only provided a 0.15-MPa increase in compressive strength per degree Celsius. Furthermore, curing temperatures above 110° C resulted in degraded surface quality noted by defects at the layer laminations. Specimens required a minimum light curing exposure time of four hours to reach the maximum cure at which point any increase in exposure time provided no substantial increase in compressive strength.

Originality/value

This study provides recommendations for printing parameters and curing methods to achieve the optimum mechanical properties of cured stereolithography specimens.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Details

Responsible Investment Around the World: Finance after the Great Reset
Type: Book
ISBN: 978-1-80382-851-0

Open Access
Article
Publication date: 25 May 2021

Issara Siramaneerat

This research aims to study self-defense behaviors from coronavirus disease 2019 (COVID-19) and to investigate factors affecting the prevention and control behavior of COVID-19…

1575

Abstract

Purpose

This research aims to study self-defense behaviors from coronavirus disease 2019 (COVID-19) and to investigate factors affecting the prevention and control behavior of COVID-19 among personnel at Rajamangala University of Technology Thanyaburi.

Design/methodology/approach

The sample was 405 personnel of Rajamangala University of Technology Thanyaburi. The sample was calculated by using the Yamane formula at a confidence level of 95. The researcher collected the data between July 1 and 15, 2020. Questionnaire items were developed following the health belief model (HBM). The questionnaire contains basic information, knowledge of COVID-19, perception of COVID-19 and COVID-19 preventive behaviors. Data were analyzed by descriptive statistics, correlation coefficients and multiple regression analysis at the statistical significance level of 0.05.

Findings

The results showed that the sample had an average knowledge about COVID-19 of 8.93, the perceived of risk and severity of COVID-19 was presented average of 4.22 and 3.48. The perceived of benefits and barriers of COVID-19 showed average of 4.31 and 2.72 and mean of COVID-19 prevention and control behaviors was 2.41. The multiple regression analysis showed that the model can explain the various self-defense behaviors from COVID-19 of 11.30%. Perception of the benefits of COVID-19 had a statistically significant effect on self-defense behaviors from COVID-19 at the level 0.05 (Beta = 0.232, 95% CI: 1.233–3.395, p < 0.001).

Originality/value

Based on the results, the relationship between HBM and COVID-19 prevention behavior can be clearly seen. This study found the perception of benefit toward COVID-19 affected prevention practice. Thus, using HBM could be useful in improving preventive behaviors of COVID-19.

Details

Journal of Health Research, vol. 36 no. 5
Type: Research Article
ISSN: 0857-4421

Keywords

Article
Publication date: 17 July 2020

Gülçin Baysal, Gizem Keleş, Berdan Kalav, F. Seniha Güner and Burçak Karagüzel Kayaoğlu

In this study, it is aimed to synthesize ultraviolet (UV)-curable water-borne polyurethane acrylate (WPUA) binders using different types of polyols (poly (propylene glycol), PPG…

Abstract

Purpose

In this study, it is aimed to synthesize ultraviolet (UV)-curable water-borne polyurethane acrylate (WPUA) binders using different types of polyols (poly (propylene glycol), PPG1000 and PPG2000 and poly (ethylene glycol), PEG1000 and PEG2000) at different molecular weights, DMPA (2,2-bis(hydroxymethyl) propionic acid) at different amounts and isophorone diisocyanate (IPDI) and use for pigment printing on synthetic leather.

Design/methodology/approach

UV-cured films were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC). The effect of binder structure on printing performance was determined with hardness, crock fastness, abrasion resistance and color measurements.

Findings

The highest abrasion resistance (60,000 cycles) and crock fastness values (dry crock and wet crock: 3/4) were obtained with binder PEG-C synthesized with PEG2000 and lower DMPA amount of 4.89 wt%; however, PEG-C binder showed lower hardness values. Due to lower urethane groups in PEG-C binder, more flexible films were obtained which imparted good adhesion property to printing film. Synthesized binders provided lower crock fastness and abrasion resistance properties than commercial WPUA binder.

Originality/value

Pigmented formulations including UV-curable water-borne synthesized PUA binder were developed and for the first time applied onto synthetic leather using screen printing method. Within this context, a new environmentally friendly printing method was proposed in this study including binder synthesis in the preparation of printing formulations.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 October 2018

Jerzy Bochnia and Slawomir Blasiak

The purpose of this paper was to verify the possibility of applying differential calculus of incomplete order to describe relaxation of the material obtained using selective laser…

Abstract

Purpose

The purpose of this paper was to verify the possibility of applying differential calculus of incomplete order to describe relaxation of the material obtained using selective laser sintering (SLS) technology.

Design/methodology/approach

The samples were made using the incremental technology for three print directions. Relaxation tests were conducted. The theoretical curves, which are the solution of the equation describing the five-parameter Maxwell-Wiechert model for derivatives in relation to the total time of complete order and fractional order, were adjusted to the obtained experimental curves.

Findings

The SLS technology creates new possibilities regarding modelling polymeric elements which might be applied as functional models (products). Therefore, it is necessary to conduct an in-depth study of their properties, including relaxation properties, which is associated with the necessity to use proper mathematical tools to describe those properties. The differential calculus of incomplete order was applied herein to describe the anisotropy of relaxation properties because of the print direction in relation to the relaxation curves adjusted with the five-parameter Maxwell-Wiechert model.

Research limitations/implications

As a result of the conducted considerations, the authors obtained the dependencies describing the anisotropy of relaxation properties with the use of coefficients alpha and beta, which stand for the derivative order of the differential equation, whereas coefficient kappa stands for the translation coefficient which is an innovative application of this type of mathematical apparatus.

Practical implications

The developed method might be applied to describe the anisotropy of a broader group of materials manufactured with the use of incremental technologies.

Originality/value

The application of the differential calculus of incomplete order to describe the anisotropy of the materials manufactured from polyamide powder using the SLS technology is a distinctive feature of this paper. A crucial cognitive element of the conducted research is the fact which confirms that the dynamic viscosity coefficients have the greatest impact on the anisotropy of material properties depending on the print directions.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 6 of 6