Search results

1 – 10 of 517
Article
Publication date: 25 June 2020

Yang Tian, Dacian Tomus, Aijun Huang and Xinhua Wu

Limited research has attempted to reveal the different modes of the melt pool formation in additive manufacturing. This paper aims to study the mechanisms of surface roughness…

Abstract

Purpose

Limited research has attempted to reveal the different modes of the melt pool formation in additive manufacturing. This paper aims to study the mechanisms of surface roughness formation, especially on the aspect of melt pool formation which determine the surface profile and consequently significantly influence the surface roughness.

Design/methodology/approach

In this study, the conditions under which different modes of melt pool formation (conduction mode and keyhole mode) occur for the case of as-fabricated Hastelloy X using direct metal laser solidification (DMLS) are derived and validated experimentally. Top surfaces of uni-directionally built samples under various processing conditions are cut, grinded, polished and etched to reveal their individual melt pool morphologies. Similarly, up-skin (slope angle < 90°) and down-skin (slope angle > 90°) melt pool morphologies are also investigated to compare the differences. Surface tension gradients and resultant Marangoni flow, which dominate the melt flow in the melt pool, is also calculated to help better evaluate the melt pool shape forming.

Findings

Two types of melt pool formation modes are dominating in DMLS: conduction mode and keyhole mode. Melt pool formed by conduction mode generally has an aspect ratio of 1:2 (depth vs width) and is in elliptical shape. Appropriate selection of scanning laser power and speed are required to maintain a low characteristic length and width ratio to prevent ballings. Melt pool formed by keyhole mode has an aspect ratio of 1:1 or less. High-energy contour promotes formation of key-hole-shaped melt pool which fills the gaps between layers and smoothens the up-skin surface roughness. Low-energy contour scan is necessary for down-skin surface to form small melt pool profiles and achieve low Ra.

Originality/value

This paper provides valuable insight into the origins of surface quality problem of DMLS, which is a very critical issue for upgrading the process for manufacturing real components. This paper helps promote the understanding of the attributes and capabilities of this rapidly evolving three-dimensional printing technology and allow appropriate control of processing parameters for successful fabrication of components with sound surface quality.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 31 July 2009

Lino Costa and Rui Vilar

The purpose of this paper is to review the state of the art of laser powder deposition (LPD), a solid freeform fabrication technique capable of fabricating fully dense functional…

4602

Abstract

Purpose

The purpose of this paper is to review the state of the art of laser powder deposition (LPD), a solid freeform fabrication technique capable of fabricating fully dense functional items from a wide range of common engineering materials, such as aluminum alloys, steels, titanium alloys, nickel superalloys and refractory materials.

Design/methodology/approach

The main R&D efforts and the major issues related to LPD are revisited.

Findings

During recent years, a worldwide series of R&D efforts have been undertaken to develop and explore the capabilities of LPD and to tap into the possible cost and time savings and many potential applications that this technology offers.

Originality/value

These R&D efforts have produced a wealth of knowledge, the main points of which are highlighted herein.

Details

Rapid Prototyping Journal, vol. 15 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 October 2022

Yang Zhou, Wenying Qu, Fan Zhou, Xinggang Li, Lijun Song and Qiang Zhu

This paper aims to understand the magnetohydrodynamics (MHD) mechanism in the molten pool under different modes of magnetic field. The comparison focuses on the Lorenz force…

Abstract

Purpose

This paper aims to understand the magnetohydrodynamics (MHD) mechanism in the molten pool under different modes of magnetic field. The comparison focuses on the Lorenz force excitation and its effect on the melt flow and solidification parameters, intending to obtain practical references for the design of magnetic field-assisted laser directed energy deposition (L-DED) equipment.

Design/methodology/approach

A three-dimensional transient multi-physical model, coupled with MHD and thermodynamic, was established. The dimension and microstructure of the molten pool under a 0T magnetic field was used as a benchmark for accuracy verification. The interaction between the melt flow and the Lorenz force is compared under a static magnetic field in the X-, Y- and Z-directions, and also an oscillating and alternating magnetic field.

Findings

The numerical results indicate that the chaotic fluctuation of melt flow trends to stable under the magnetostatic field, while a periodically oscillating melt flow could be obtained by applying a nonstatic magnetic field. The Y and Z directional applied magnetostatic field shows the effective damping effect, while the two nonstatic magnetic fields discussed in this paper have almost the same effect on melt flow. Since the heat transfer inside the molten pool is dominated by convection, the application of a magnetic field has a limited effect on the temperature gradient and solidification rate at the solidification interface due to the convection mode of melt flow is still Marangoni convection.

Originality/value

This work provided a deeper understanding of the interaction mechanism between the magnetic field and melt flow inside the molten pool, and provided practical references for magnetic field-assisted L-DED equipment design.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 March 2017

Michele Chiumenti, Xin Lin, Miguel Cervera, Wei Lei, Yuxiang Zheng and Weidong Huang

This paper aims to address the numerical simulation of additive manufacturing (AM) processes. The numerical results are compared with the experimental campaign carried out at…

1352

Abstract

Purpose

This paper aims to address the numerical simulation of additive manufacturing (AM) processes. The numerical results are compared with the experimental campaign carried out at State Key Laboratory of Solidification Processing laboratories, where a laser solid forming machine, also referred to as laser engineered net shaping, is used to fabricate metal parts directly from computer-aided design models. Ti-6Al-4V metal powder is injected into the molten pool created by a focused, high-energy laser beam and a layer of added material is sinterized according to the laser scanning pattern specified by the user.

Design/methodology/approach

The numerical model adopts an apropos finite element (FE) activation technology, which reproduces the same scanning pattern set for the numerical control system of the AM machine. This consists of a complex sequence of polylines, used to define the contour of the component, and hatches patterns to fill the inner section. The full sequence is given through the common layer interface format, a standard format for different manufacturing processes such as rapid prototyping, shape metal deposition or machining processes, among others. The result is a layer-by-layer metal deposition which can be used to build-up complex structures for components such as turbine blades, aircraft stiffeners, cooling systems or medical implants, among others.

Findings

Ad hoc FE framework for the numerical simulation of the AM process by metal deposition is introduced. Description of the calibration procedure adopted is presented.

Originality/value

The objectives of this paper are twofold: firstly, this work is intended to calibrate the software for the numerical simulation of the AM process, to achieve high accuracy. Secondly, the sensitivity of the numerical model to the process parameters and modeling data is analyzed.

Article
Publication date: 2 January 2018

Dmytro Svyetlichnyy, Michal Krzyzanowski, Robert Straka, Lukasz Lach and W. Mark Rainforth

The holistic numerical model based on cellular automata (CA) and lattice Boltzmann method (LBM) are being developed as part of an integrated modelling approach applied to study…

Abstract

Purpose

The holistic numerical model based on cellular automata (CA) and lattice Boltzmann method (LBM) are being developed as part of an integrated modelling approach applied to study the interaction of different physical mechanisms in laser-assisted additive layer manufacturing (ALM) of orthopaedic implants. Several physical events occurring in sequence or simultaneously are considered in the holistic model. They include a powder bed deposition, laser energy absorption and heating of the powder bed by the moving laser beam, leading to powder melting or sintering, fluid flow in the melted pool and flow through partly or not melted material, and solidification. The purpose of this study is to develop a structure of the holistic numerical model based on CA and LBM applicable for studying the interaction of the different physical mechanisms in ALM of orthopaedic implants. The model supposed to be compatible with the earlier developed CA-based model for the generation of the powder bed.

Design/methodology/approach

The mentioned physical events are accompanied by heat transfer in solid and liquid phases including interface heat transfer at the boundaries. The sintering/melting model is being developed using LBM as an independent numerical method for hydrodynamic simulations originated from lattice gas cellular automata. It is going to be coupled with the CA-based model of powder bed generation.

Findings

The entire laser-assisted ALM process has been analysed and divided on several stages considering the relevant physical phenomena. The entire holistic model consisting of four interrelated submodels has currently been developed to a different extent. The submodels include the CA-based model of powder bed generation, the LBM-CA-based model of heat exchange and transfer, the thermal solid-liquid interface model and the mechanical solid-liquid interface model for continuous liquid flow.

Practical implications

The results obtained can be used to explain the interaction of the different physical mechanisms in ALM, which is an intensively developing field of advanced manufacturing of metal, non-metal and composite structural parts, for instance, in bio-engineering. The proposed holistic model is considered to be a part of the integrated modelling approach being developed as a numerical tool for investigation of the co-operative relationships between multiphysical phenomena occurring in sequence or simultaneously during heating of the powder bed by the moving high energy heat source, leading to selective powder sintering or melting, fluid flow in the melted pool and through partly (or not) melted material, as well as solidification. The model is compatible with the earlier developed CA-based model for the generation of the powder bed, allowing for decrease in the numerical noise.

Originality/value

The present results are original and new for the study of the complex relationships between multiphysical phenomena occurring during ALM process based on selective laser sintering or melting, including fluid flow and heat transfer, identified as crucial for obtaining the desirable properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 April 2017

Swee Leong Sing, Wai Yee Yeong, Florencia Edith Wiria, Bee Yen Tay, Ziqiang Zhao, Lin Zhao, Zhiling Tian and Shoufeng Yang

This paper aims to provide a review on the process of additive manufacturing of ceramic materials, focusing on partial and full melting of ceramic powder by a high-energy laser

5587

Abstract

Purpose

This paper aims to provide a review on the process of additive manufacturing of ceramic materials, focusing on partial and full melting of ceramic powder by a high-energy laser beam without the use of binders.

Design/methodology/approach

Selective laser sintering or melting (SLS/SLM) techniques are first introduced, followed by analysis of results from silica (SiO2), zirconia (ZrO2) and ceramic-reinforced metal matrix composites processed by direct laser sintering and melting.

Findings

At the current state of technology, it is still a challenge to fabricate dense ceramic components directly using SLS/SLM. Critical challenges encountered during direct laser melting of ceramic will be discussed, including deposition of ceramic powder layer, interaction between laser and powder particles, dynamic melting and consolidation mechanism of the process and the presence of residual stresses in ceramics processed via SLS/SLM.

Originality/value

Despite the challenges, SLS/SLM still has the potential in fabrication of ceramics. Additional research is needed to understand and establish the optimal interaction between the laser beam and ceramic powder bed for full density part fabrication. Looking into the future, other melting-based techniques for ceramic and composites are presented, along with their potential applications.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2020

Shekhar Srivastava, Rajiv Kumar Garg, Vishal S. Sharma, Noe Gaudencio Alba-Baena, Anish Sachdeva, Ramesh Chand and Sehijpal Singh

This paper aims to present a systematic approach in the literature survey related to metal additive manufacturing (AM) processes and its multi-physics continuum modelling approach…

Abstract

Purpose

This paper aims to present a systematic approach in the literature survey related to metal additive manufacturing (AM) processes and its multi-physics continuum modelling approach for its better understanding.

Design/methodology/approach

A systematic review of the literature available in the area of continuum modelling practices adopted for the powder bed fusion (PBF) AM processes for the deposition of powder layer over the substrate along with quantification of residual stress and distortion. Discrete element method (DEM) and finite element method (FEM) approaches have been reviewed for the deposition of powder layer and thermo-mechanical modelling, respectively. Further, thermo-mechanical modelling adopted for the PBF AM process have been discussed in detail with its constituents. Finally, on the basis of prediction through thermo-mechanical models and experimental validation, distortion mitigation/minimisation techniques applied in PBF AM processes have been reviewed to provide a future direction in the field.

Findings

The findings of this paper are the future directions for the implementation and modification of the continuum modelling approaches applied to PBF AM processes. On the basis of the extensive review in the domain, gaps are recommended for future work for the betterment of modelling approach.

Research limitations/implications

This paper is limited to review only the modelling approach adopted by the PBF AM processes, i.e. modelling techniques (DEM approach) used for the deposition of powder layer and macro-models at process scale for the prediction of residual stress and distortion in the component. Modelling of microstructure and grain growth has not been included in this paper.

Originality/value

This paper presents an extensive review of the FEM approach adopted for the prediction of residual stress and distortion in the PBF AM processes which sets the platform for the development of distortion mitigation techniques. An extensive review of distortion mitigation techniques has been presented in the last section of the paper, which has not been reviewed yet.

Article
Publication date: 6 December 2019

Muhammad Omar Shaikh, Ching-Chia Chen, Hua-Cheng Chiang, Ji-Rong Chen, Yi-Chin Chou, Tsung-Yuan Kuo, Kei Ameyama and Cheng-Hsin Chuang

Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material…

Abstract

Purpose

Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish.

Design/methodology/approach

The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated.

Findings

An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented.

Originality/value

To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2021

Modupeola Dada, Patricia Popoola and Ntombi Mathe

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential…

1475

Abstract

Purpose

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

Design/methodology/approach

Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

Findings

HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

Research limitations/implications

The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

Originality/value

It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 517