Search results

1 – 5 of 5
Article
Publication date: 7 August 2019

Zhihua Niu, Zhimin Li, Sun Jin and Tao Liu

This paper aims to carry out assembly variation analysis for mechanisms with compliant joints by considering deformations induced by manufactured deviations. Such an analysis…

Abstract

Purpose

This paper aims to carry out assembly variation analysis for mechanisms with compliant joints by considering deformations induced by manufactured deviations. Such an analysis procedure extends the application area of direct linearization method (DLM) to compliant mechanisms and also illustrates the dimensional interaction within multi-loop compliant structures.

Design/methodology/approach

By applying DLM to both geometrical equations and Lagrange’s equations of the second kind, an analytical deviation modeling method for mechanisms with compliant joints are proposed and further used for statistical assembly variation analysis. The precision of this method is verified by comparing it with finite element simulation and traditional DLM.

Findings

A new modeling method is proposed to represent kinematic relationships between joint deformations and parts/components deviations. Based on a case evaluation, the computational efficiency is improved greatly while the modeling accuracy is maintained at more than 94% rate comparing with the benchmark finite element simulation.

Originality/value

The Equilibrium Equations of Incremental Forces derived from Lagrange’s equations are proposed to quantitatively represent the relationships between manufactured deviations and assembly deformations. The present method extends the application area of DLM to compliant structures, such as automobile suspension systems and some Micro-Electro-Mechanical-Systems.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 10 February 2020

Dongping Zhao, Gangfeng Wang, Jizhuang Hui, Wei Hou and Richard David Evans

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and…

Abstract

Purpose

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and quality of assembly. However, there is still a need for a systematic approach to be developed for APA of kinematic mechanisms. To achieve more accurate analysis of kinematic assembly, this paper aims to propose a precision analysis method based on equivalence of the deviation source.

Design/methodology/approach

A unified deviation vector representation model is adopted by considering dimension deviation, geometric deviation, joint clearance and assembly deformation. Then, vector loops and vector equations are constructed, according to joint type and deviation propagation path. A combined method, using deviation accumulation and sensitivity modeling, is applied to solve the kinematic APA of complex products.

Findings

When using the presented method, geometric form deviation, joint clearance and assembly deformation are considered selectively during tolerance modeling. In particular, the proposed virtual link model and its orientation angle are developed to determine joint deviation. Finally, vector loops and vector equations are modeled to express deviation accumulation.

Originality/value

The proposed method provides a new means for the APA of complex products, considering joint clearance and assembly deformation while improving the accuracy of APA, as much as possible.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 September 2019

S. Khodaygan and A. Ghaderi

The purpose of this paper is to present a new efficient method for the tolerance–reliability analysis and quality control of complex nonlinear assemblies where explicit assembly…

Abstract

Purpose

The purpose of this paper is to present a new efficient method for the tolerance–reliability analysis and quality control of complex nonlinear assemblies where explicit assembly functions are difficult or impossible to extract based on Bayesian modeling.

Design/methodology/approach

In the proposed method, first, tolerances are modelled as the random uncertain variables. Then, based on the assembly data, the explicit assembly function can be expressed by the Bayesian model in terms of manufacturing and assembly tolerances. According to the obtained assembly tolerance, reliability of the mechanical assembly to meet the assembly requirement can be estimated by a proper first-order reliability method.

Findings

The Bayesian modeling leads to an appropriate assembly function for the tolerance and reliability analysis of mechanical assemblies for assessment of the assembly quality, by evaluation of the assembly requirement(s) at the key characteristics in the assembly process. The efficiency of the proposed method by considering a case study has been illustrated and validated by comparison to Monte Carlo simulations.

Practical implications

The method is practically easy to be automated for use within CAD/CAM software for the assembly quality control in industrial applications.

Originality/value

Bayesian modeling for tolerance–reliability analysis of mechanical assemblies, which has not been previously considered in the literature, is a potentially interesting concept that can be extended to other corresponding fields of the tolerance design and the quality control.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 March 2019

Biao Mei, Weidong Zhu, Yinglin Ke and Pengyu Zheng

Assembly variation analysis generally demands probability distributions of variation sources. However, due to small production volume in aircraft manufacturing, especially…

Abstract

Purpose

Assembly variation analysis generally demands probability distributions of variation sources. However, due to small production volume in aircraft manufacturing, especially prototype manufacturing, the probability distributions are hard to obtain, and only the small-sample data of variation sources can be consulted. Thus, this paper aims to propose a variation analysis method driven by small-sample data for compliant aero-structure assembly.

Design/methodology/approach

First, a hybrid assembly variation model, integrating rigid effects with flexibility, is constructed based on the homogeneous transformation and elasticity mechanics. Then, the bootstrap approach is introduced to estimate a variation source based on small-sample data. The influences of bootstrap parameters on the estimation accuracy are analyzed to select suitable parameters for acceptable estimation performance. Finally, the process of assembly variation analysis driven by small-sample data is demonstrated.

Findings

A variation analysis method driven by small-sample data, considering both rigid effects and flexibility, is proposed for aero-structure assembly. The method provides a good complement to traditional variation analysis methods based on probability distributions of variation sources.

Practical implications

With the proposed method, even if probability distribution information of variation sources cannot be obtained, accurate estimation of the assembly variation could be achieved. The method is well suited for aircraft assembly, especially in the stage of prototype manufacturing.

Originality/value

A variation analysis method driven by small-sample data is proposed for aero-structure assembly, which can be extended to deal with other similar applications.

Article
Publication date: 18 June 2021

Chuanyuan Zhou, Zhenyu Liu, Chan Qiu and Jianrong Tan

The conventional statistical method of three-dimensional tolerance analysis requires numerous pseudo-random numbers and consumes enormous computations to increase the calculation…

Abstract

Purpose

The conventional statistical method of three-dimensional tolerance analysis requires numerous pseudo-random numbers and consumes enormous computations to increase the calculation accuracy, such as the Monte Carlo simulation. The purpose of this paper is to propose a novel method to overcome the problems.

Design/methodology/approach

With the combination of the quasi-Monte Carlo method and the unified Jacobian-torsor model, this paper proposes a three-dimensional tolerance analysis method based on edge sampling. By setting reasonable evaluation criteria, the sequence numbers representing relatively smaller deviations are excluded and the remaining numbers are selected and kept which represent deviations approximate to and still comply with the tolerance requirements.

Findings

The case study illustrates the effectiveness and superiority of the proposed method in that it can reduce the sample size, diminish the computations, predict wider tolerance ranges and improve the accuracy of three-dimensional tolerance of precision assembly simultaneously.

Research limitations/implications

The proposed method may be applied only when the dimensional and geometric tolerances are interpreted in the three-dimensional tolerance representation model.

Practical implications

The proposed tolerance analysis method can evaluate the impact of manufacturing errors on the product structure quantitatively and provide a theoretical basis for structural design, process planning and manufacture inspection.

Originality/value

The paper is original in proposing edge sampling as a sampling strategy to generating deviation numbers in tolerance analysis.

Details

Assembly Automation, vol. 41 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Access

Year

All dates (5)

Content type

1 – 5 of 5