Search results

1 – 5 of 5
Article
Publication date: 14 August 2019

Jin-yuan Qian, Zan Wu, Qian-Kun Zhang, Zhi-Jiang Jin and Bengt Ake Sunden

The purpose of this paper is to study the effects of dimple geometries and arrangements on the heat transfer enhancement in a dimple jacketed heat exchanger.

Abstract

Purpose

The purpose of this paper is to study the effects of dimple geometries and arrangements on the heat transfer enhancement in a dimple jacketed heat exchanger.

Design/methodology/approach

For the purpose of this paper, with the experimental validated numerical model, this paper carries out numerical simulations of both single dimples with different geometries and the whole dimple jacketed heat exchanger with different dimple arrangements. For a single dimple, its secondary vortex flow, temperature differences and the pressure drop performance for different geometries are analyzed. For the whole dimple jacketed heat exchanger, the heat transfer and pressure drop performances are investigated by comparing the no dimple, triangular and rectangular dimple arrangements.

Findings

Results show that dimples can improve the heat transfer efficiency compared with conventional jacketed heat exchanger, and specific geometries and arrangement of dimples for better heat transfer performance are figured out.

Originality/value

This paper considers both dimple geometries and arrangements, which can be useful for further applications in specific integrated devices or similar applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2020

Alankrita Singh, Balaji Chakravarthy and BVSSS Prasad

Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate…

Abstract

Purpose

Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate the effect of protrusions on the heat transfer by placing semi-circular protrusions on the concave surface at several positions. After identifying appropriate locations where the heat transfer is a maximum, multiple protrusions are placed at desired locations on the plate. The gap ratio, curvature ratio (d/D) and the dimensions of the plate are varied so as to obtain heat transfer data. The curvature ratio is varied first, keeping the concave diameter (D) fixed followed by a fixed slot width (d). A surrogate model based on an artificial neural network is developed to determine optimum locations of the protrusions that maximize the heat transfer from the concave surface.

Design/methodology/approach

The scope and objectives of the present study are two-dimensional numerical simulations of the problem by considering all the geometrical parameters (H/d, dp, Re, θ) affecting heat transfer characteristics with the help of networking tool and numerical simulation. Development of a surrogate forward model with artificial neural networks (ANNs) with a view to explore the full parametric space. To quantitatively ascertain if protrusions hurt or help heat transfer for an impinging jet on a concave surface. Determination of the location of protrusions where higher heat transfer could be achieved by using exhaustive search with the surrogate model to replace the time consuming forward model.

Findings

A single protrusion has nearly no effect on the heat transfer. For a fixed diameter of concave surface, a smaller jet possesses high turbulence kinetic energy with greater heat transfer. ANN is a powerful tool to not only predict impingement heat transfer characteristics by considering multiple parameters but also to determine the optimum configuration from many thousands of candidate solutions. A maximum increase of 8 per cent in the heat transfer is obtained by the best configuration constituting of multiple protrusions, with respect to the baseline smooth configuration. Even this can be considered as marginal and so it can be concluded that first cut results for heat transfer for an impinging jet on a concave surface with protrusions can be obtained by geometrically modeling a much simpler plain concave surface without any significant loss of accuracy.

Originality/value

The heat transfer during impingement cooling depends on various geometrical parameters but, not all the pertinent parameters have been varied comprehensively in previous studies. It is known that a rough surface may improve or degrade the amount of heat transfer depending on their geometrical dimensions of the target and the rough geometry and the flow conditions. Furthermore, to the best of authors’ knowledge, scarce studies are available with inclusion of protrusions over a concave surface. The present study is devoted to development of a surrogate forward model with ANNs with a view to explore the full parametric space.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2020

Ali Akbar Abbasian Arani and Reza Moradi

Using turbulators, obstacles, ribs, corrugations, baffles and different tube geometry, and also various arrangements of these components have a noticeable effect on the shell and…

Abstract

Purpose

Using turbulators, obstacles, ribs, corrugations, baffles and different tube geometry, and also various arrangements of these components have a noticeable effect on the shell and tube heat exchangers (STHEs) thermal-hydraulic performance. This study aims to investigate non-Newtonian fluid flow characteristics and heat transfer features of water and carboxyl methyl cellulose (H2O 99.5%:0.5% CMC)-based Al2O3 nanofluid inside the STHE equipped with corrugated tubes and baffles using two-phase mixture model.

Design/methodology/approach

Five different corrugated tubes and two baffle shapes are studied numerically using finite volume method based on SIMPLEC algorithm using ANSYS-Fluent software.

Findings

Based on the obtained results, it is shown that for low-mass flow rates, the disk baffle (DB) has more heat transfer coefficient than that of segmental baffle (SB) configuration, while for mass flow rate more than 1 kg/s, using the SB leads to more heat transfer coefficient than that of DB configuration. Using the DB leads to higher thermal-hydraulic performance evaluation criteria (THPEC) than that of SB configuration in heat exchanger. The THPEC values are between 1.32 and 1.45.

Originality/value

Using inner, outer or inner/outer corrugations (outer circular rib and inner circular rib [OCR+ICR]) tubes for all mass flow rates can increase the THPEC significantly. Based on the present study, STHE with DB and OCR+ICR tubes configuration filled with water/CMC/Al2O3 with f = 1.5% and dnp = 100 nm is the optimum configuration. The value of THPEC in referred case was 1.73, while for outer corrugations and inner smooth, this value is between 1.34 and 1.57, and for outer smooth and inner corrugations, this value is between 1.33 and 1.52.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 December 2020

Fei Wang and Xiaobing Zhang

This study aims to present a numerical study on the flow and heat transfer performance of a water-cooled tube with protrusions in different geometrical parameters.

Abstract

Purpose

This study aims to present a numerical study on the flow and heat transfer performance of a water-cooled tube with protrusions in different geometrical parameters.

Design/methodology/approach

A new type of enhanced heat exchanger tube is designed. Protrusions are formed on the inner surface of the tube by mechanical expansion, compression and other processing methods. A three-dimensional numerical symmetry model is established by ANSYS for studying the influence of protrusion distance, protrusion radius and protrusion arrangement on flow and heat transfer characteristics in turbulent flow.

Findings

The results show that the protrusions increase the heat transfer area and improve the heat transfer effect but also increase the flow resistance. Performance evaluation criteria (PEC) is applied to evaluate the flow and heat transfer characteristics of convex tubes. When adopting the aligned protrusions arrangement, the radius of 2 mm and distance of twice the protrusion radius is most heat transfer effect. The PEC of protrusion tubes with a staggered arrangement are higher than those in aligned arrangement, and the maximum value is 2.36 when Reynolds number is 12,000.

Originality/value

At present, most of the protrusion technology applications are based on the cold plate heat dissipation of electronic devices, and the flow path is rectangular. Convex tube heat exchanger is a high-efficiency heat exchanger, which uses convex tubes instead of smooth tubes in tubular heat exchangers to enhance heat transfer and widely used in petroleum, chemical, textile, oil refining and other industries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 1951

THE problem of the dissipation and transfer of heat is one that is becoming of increasing importance in aircraft with the introduction of gas‐turbines and jet propulsion as well…

Abstract

THE problem of the dissipation and transfer of heat is one that is becoming of increasing importance in aircraft with the introduction of gas‐turbines and jet propulsion as well as in view of the prospects of flight at high altitudes. We are therefore printing below summaries of all the papers read at the recent Anglo‐American conference on the subject, although some of them are not directly concerned with aeronautical applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 23 no. 10
Type: Research Article
ISSN: 0002-2667

1 – 5 of 5