Search results

1 – 10 of 23
Article
Publication date: 11 October 2018

Lei Luo, Wei Du, Songtao Wang, Weilong Wu and Xinghong Zhang

The purpose of this paper is to investigate the optimal geometry parameters in a dimple/protrusion-pin finned channel with high thermal performance.

552

Abstract

Purpose

The purpose of this paper is to investigate the optimal geometry parameters in a dimple/protrusion-pin finned channel with high thermal performance.

Design/methodology/approach

The BSL turbulence model is used to calculate the flow structure and heat transfer in a dimple/protrusion-pin finned channel. The optimization algorithm is set as Non-dominated Sorting Genetic Algorithm II (NSGA-II). The high Nusselt number and low friction factor are chosen as the optimization objectives. The pin fin diameter, dimple/protrusion diameter, dimple/protrusion location and dimple/protrusion depth are applied as the optimization variables. An in-house code is used to generate the geometry model and mesh. The commercial software Isight is used to perform the optimization process.

Findings

The results show that the Nusselt number and friction factor are sensitive to the geometry parameters. In a pin finned channel with a dimple, the Nusselt number is high at the rear part of the dimple, while it is low at the upstream of the dimple. A high dissipative function is found near the pin fin. In the protrusion channel, the Nusselt number is high at the leading edge of the protrusion. In addition, the protrusion induces a high pressure drop compared to the dimpled channel.

Originality/value

The originality of this paper is to optimize the geometry parameters in a pin finned channel with dimple/protrusion. This is good application for the heat transfer enhancement at the trailing side for the gas turbine.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 February 2019

Mohammad Fazli and Mehrdad Raisee

This paper aims to predict turbulent flow and heat transfer through different channels with periodic dimple/protrusion walls. More specifically, the performance of various low-Re k

Abstract

Purpose

This paper aims to predict turbulent flow and heat transfer through different channels with periodic dimple/protrusion walls. More specifically, the performance of various low-Re k-ε turbulence models in prediction of local heat transfer coefficient is evaluated.

Design/methodology/approach

Three low-Re number k-ε turbulence models (the zonal k-ε, the linear k-ε and the nonlinear k-ε) are used. Computations are performed for three geometries, namely, a channel with a single dimpled wall, a channel with double dimpled walls and a channel with a single dimple/protrusion wall. The predictions are obtained using an in house finite volume code.

Findings

The numerical predictions indicate that the nonlinear k-ε model predicts a larger recirculation bubble inside the dimple with stronger impingement and upwash flow than the zonal and linear k-ε models. The heat transfer results show that the zonal k-ε model returns weak thermal predictions in all test cases in comparison to other turbulence models. Use of the linear k-ε model leads to improvement in heat transfer predictions inside the dimples and their back rim. However, the most accurate thermal predictions are obtained via the nonlinear k-ε model. As expected, the replacement of the algebraic length-scale correction term with the differential version improves the heat transfer predictions of both linear and nonlinear k-ε models.

Originality/value

The most reliable turbulence model of the current study (i.e. nonlinear k-ε model) may be used for design and optimization of various thermal systems using dimples for heat transfer enhancement (e.g. heat exchangers and internal cooling system of gas turbine blades).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 March 2023

Debajit Das and Sashindra Kumar Kakoty

This paper aims to investigate the effects of inertia of the lubricant on the performance parameters of journal bearings textured with spherical-shaped textures.

Abstract

Purpose

This paper aims to investigate the effects of inertia of the lubricant on the performance parameters of journal bearings textured with spherical-shaped textures.

Design/methodology/approach

The lubricant is assumed to be Newtonian, and the flow is considered laminar. Considering the lubricant inertia effects, the modified Reynolds equation is discretized using the finite difference method and solved with the Gauss–Seidel successive over-relaxation scheme using the progressive mesh densification method.

Findings

The results from this numerical study indicate that the lubricant inertia improves textured journal bearing performance characteristics significantly. The improvement is more significant in the case of heavily loaded bearings. Furthermore, it is observed that protruded texturing in journal bearings shows better results compared to dimple textured journal bearings.

Originality/value

Understanding the effect of lubricant inertia is essential for efficiently designing textured journal bearings. Thus, the results shown here would be helpful for the researchers and the bearing designers.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 July 2017

Jian Liu, Gongnan Xie, Bengt Ake Sunden, Lei Wang and Martin Andersson

The purpose of this paper is to augment heat transfer rates of traditional rib-elements with minimal pressure drop penalties.

Abstract

Purpose

The purpose of this paper is to augment heat transfer rates of traditional rib-elements with minimal pressure drop penalties.

Design/methodology/approach

The novel geometries in the present research are conventional cylindrical ribs with rounded transitions to the adjacent flat surfaces and with modifications at their bases. All turbulent fluid flow and heat transfer results are presented using computation fluid dynamics with a validated v2f turbulence closure model. Turbulent flow characteristics and heat transfer performances in square channels with improved ribbed structures are numerically analyzed in this research work.

Findings

Based on the results, it is found that rounded transition cylindrical ribs have a large advantage over the conventional ribs in both enhancing heat transfer and reducing pressure loss penalty. In addition, cylindrical ribs increase the flow impingement at the upstream of the ribs, which will effectively increase the high heat transfer areas. The design of rounded transition cylindrical ribs and grooves will be an effective way to improve heat transfer enhancement and overall thermal performance of internal channels within blade cooling.

Originality/value

The novel geometries in this research are conventional cylindrical ribs with rounded transitions to the adjacent flat surfaces and with modifications at their bases. The combination of cylindrical ribs and grooves to manipulate the turbulent flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 August 2019

Jin-yuan Qian, Zan Wu, Qian-Kun Zhang, Zhi-Jiang Jin and Bengt Ake Sunden

The purpose of this paper is to study the effects of dimple geometries and arrangements on the heat transfer enhancement in a dimple jacketed heat exchanger.

Abstract

Purpose

The purpose of this paper is to study the effects of dimple geometries and arrangements on the heat transfer enhancement in a dimple jacketed heat exchanger.

Design/methodology/approach

For the purpose of this paper, with the experimental validated numerical model, this paper carries out numerical simulations of both single dimples with different geometries and the whole dimple jacketed heat exchanger with different dimple arrangements. For a single dimple, its secondary vortex flow, temperature differences and the pressure drop performance for different geometries are analyzed. For the whole dimple jacketed heat exchanger, the heat transfer and pressure drop performances are investigated by comparing the no dimple, triangular and rectangular dimple arrangements.

Findings

Results show that dimples can improve the heat transfer efficiency compared with conventional jacketed heat exchanger, and specific geometries and arrangement of dimples for better heat transfer performance are figured out.

Originality/value

This paper considers both dimple geometries and arrangements, which can be useful for further applications in specific integrated devices or similar applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2022

Shiang-Wuu Perng, Horng Wen Wu, Nugroho Putra Kelana, Yi-Ling Guo and Chen-Jui Yang

The purpose of this paper, computational fluid dynamics (CFD) work, is to promote turbulent thermal convection in a heated circular tube using a passive scheme of a slotted…

Abstract

Purpose

The purpose of this paper, computational fluid dynamics (CFD) work, is to promote turbulent thermal convection in a heated circular tube using a passive scheme of a slotted twisted sheet.

Design/methodology/approach

The inventive design uses square-cut and conjugate triangular perforations to diversify the twisted tape for better thermal convection. The current novel passive scheme methodology is accomplished by carving the same square cuts and slitting various sizes of equilateral triangle perforations (side length varies between 8 and 16 mm). The re-normalisation group turbulence model and the semi-implicit method for pressure-linked equation method examine the turbulent thermal convection aspects of all simulations at different Reynolds numbers (6,000, 10,000 and 14,000).

Findings

The analyses of simulations exhibit that the placement of a twisted tape with triangle perforations and equidistant square cuts can effectually promote thermal convection in a circular tube. A larger-sized triangle perforation can increase the thermal convection enhancement and thermal performance factor, but an enlarged perforation may decrease the thermal convection enhancement and thermal performance factor. As a result, compared with the smooth circular tube, the circular tube with the slotted twisted sheet slit by a 10 mm equilateral triangle brings about the maximum improvement ratio of the mean Nusselt number of about 2.8 at Re = 6,000. Under weighing the friction through the circular tube, the tube with the slotted twisted sheet slit by a 10 mm equilateral triangle gains the best thermal performance factor of about 1.36 at Re = 6,000.

Research limitations/implications

The working fluid is water and its physical features are assumed to be constant. In addition, the fluid is considered a steady flow in this CFD work.

Practical implications

These CFD predictions will benefit the development of heat exchanger tubes equipped with a slotted twisted sheet to acquire preferable thermal convection enhancement.

Social implications

Higher thermal performance achieved by placing a slotted twisted tape in a heated tube will benefit society in lower energy consumption, machinery maintenance costs and impact on the environment.

Originality/value

This study combined triangle perforations and square cuts on the twisted sheet. This combination can induce the fluid flow across the sheet to disturb the swirling flow and then promote the fluid mixing to increase thermal convection. Therefore, this modified tape can be a profitable passive device for designing a heat exchanger.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2022

Nayab Rasool Syed and Sashindra Kumar Kakoty

The purpose of this paper is to compare the spherical protruded and dimple textured journal bearings performance characteristics with the untextured bearing.

Abstract

Purpose

The purpose of this paper is to compare the spherical protruded and dimple textured journal bearings performance characteristics with the untextured bearing.

Design/methodology/approach

The governing Reynolds equation considering the mass conserving (JFO) boundary conditions is solved using the computationally efficient progressive mesh densification (PMD) method. The central difference scheme is used for the discretization of the governing Reynolds equation. The numerical code developed is validated with the experimental results available in the literature.

Findings

From this numerical study, it has been observed that the protruded textured journal bearing gives better performance compared to the dimple textured and untextured journal bearing for friction variable, whereas dimple textured journal bearing provides better performance compared to the protruded textured and untextured journal bearing for load carrying capacity and flow coefficient. For better performance, dimple and protruded textured bearings must be textured in second-half textured region configuration.

Practical implications

The results shown here would be quite useful for the researchers generally and the bearing designers particularly.

Originality/value

The load carrying capacity should be maximum whereas, the friction coefficient should be minimum and also the adequate flow of lubricant is necessary to maintain hydrodynamic lubrication and to remove the heat generated within the bearing due to friction, which impacts the bearing performance and life. Thus, this study would be significant in effective bearing design aspect.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2019

Zhiguo Tang, Hai Li, Feng Zhang, Xiaoteng Min and Jianping Cheng

The purpose of this paper is to explore the flow and heat transfer characteristics of the jet impingement onto a conical heat sink and evaluate the ability of heat transfer…

Abstract

Purpose

The purpose of this paper is to explore the flow and heat transfer characteristics of the jet impingement onto a conical heat sink and evaluate the ability of heat transfer enhancement.

Design/methodology/approach

A numerical study of the flow and heat transfer of liquid impingement on cone heat sinks was conducted, and transition SST turbulence model was validated and adopted. The flow and thermal performances were investigated with the Reynolds number that ranges from 5,000 to 23,000 and cone angle that ranges from 0° to 70° in four regions.

Findings

Local Nusselt numbers are large, and pressure coefficients drop rapidly near the stagnation point. In the conical bottom edge, a secondary inclined jet was observed, thereby introducing a horseshoe vortex that causes drastic fluctuations in the curves of the flow and heat transfer. The average Nusselt numbers are higher in a conical protuberance than in flat plates in most cases, thus indicating that the heat transfer performance of jet impingement can be improved by a cone heat sink. The maximum increase is 13.6 per cent when the cone angle is 60°, and the Reynolds number is 23,000.

Originality/value

The flow and heat transfer behavior at the bottom edge of the cone heat sink is supplemented. The average heat transfer capacity of different heat transfer radii was evaluated, which provided a basis for the study of cone arrays.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 December 2020

Fei Wang and Xiaobing Zhang

This study aims to present a numerical study on the flow and heat transfer performance of a water-cooled tube with protrusions in different geometrical parameters.

Abstract

Purpose

This study aims to present a numerical study on the flow and heat transfer performance of a water-cooled tube with protrusions in different geometrical parameters.

Design/methodology/approach

A new type of enhanced heat exchanger tube is designed. Protrusions are formed on the inner surface of the tube by mechanical expansion, compression and other processing methods. A three-dimensional numerical symmetry model is established by ANSYS for studying the influence of protrusion distance, protrusion radius and protrusion arrangement on flow and heat transfer characteristics in turbulent flow.

Findings

The results show that the protrusions increase the heat transfer area and improve the heat transfer effect but also increase the flow resistance. Performance evaluation criteria (PEC) is applied to evaluate the flow and heat transfer characteristics of convex tubes. When adopting the aligned protrusions arrangement, the radius of 2 mm and distance of twice the protrusion radius is most heat transfer effect. The PEC of protrusion tubes with a staggered arrangement are higher than those in aligned arrangement, and the maximum value is 2.36 when Reynolds number is 12,000.

Originality/value

At present, most of the protrusion technology applications are based on the cold plate heat dissipation of electronic devices, and the flow path is rectangular. Convex tube heat exchanger is a high-efficiency heat exchanger, which uses convex tubes instead of smooth tubes in tubular heat exchangers to enhance heat transfer and widely used in petroleum, chemical, textile, oil refining and other industries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2016

Lei Luo, Chenglong Wang, Lei Wang, Bengt Ake Sunden and Sangtao Wang

The dimple is adopted into a double wall cooling structure which is widely used in hot gas components to increase the heat transfer effects with relatively low pressure drop…

Abstract

Purpose

The dimple is adopted into a double wall cooling structure which is widely used in hot gas components to increase the heat transfer effects with relatively low pressure drop penalty. The purpose of this paper is to study the effect of dimple depth and dimple diameter on the target surface heat transfer and the inlet to outlet friction factor.

Design/methodology/approach

The study is carried out by using the numerical simulations. The impingement flow is directly impinging on the dimple and released from the film holes after passing the double wall chamber. The ratio between dimple depth and dimple diameter is varied from 0 to 0.4 and the ratio between dimple diameter and impingement hole diameter is ranging from 0.5 to 3. The Reynolds number is between 10,000 and 70,000. Results of the target surface Nusselt number, friction factor and flow structures are included. For convenience of comparison, the double wall cooling structure without the dimple is considered as the baseline.

Findings

It is found that the dimple can effectively enhance the target surface heat transfer due to thinning of the flow boundary layer and flow reattachment as well as flow recirculation outside the dimple near the dimple rim especially for the large Re number condition. However, the stagnation point heat transfer is reduced. It is also found that for a large dimple depth or large dimple diameter, a salient heat transfer reduction occurs for the toroidal vortex. The thermal performance indicates that the intensity of the heat transfer enhancement depends upon the dimple depth and dimple diameter

Originality/value

This is the first time to adopt a dimple into a double wall cooling structure. It suggests that the target surface heat transfer in a double wall cooling structure can be increased by the use of the dimple. However, the heat transfer characteristic is sensitive for the different dimple diameter and dimple depth which may result in a different flow behavior

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 23