Search results

1 – 2 of 2
Article
Publication date: 10 May 2022

Senthil Kumar Selvaraj, Srimathy B., Sakthivel S. and Senthil Kumar B.

In the past decade, the biopolymeric properties of chitosan (CH) have been largely exploited for various applications. This paper aims to study the use of CH in its nanoform, i.e…

Abstract

Purpose

In the past decade, the biopolymeric properties of chitosan (CH) have been largely exploited for various applications. This paper aims to study the use of CH in its nanoform, i.e. as nanofibers blended with polyvinyl alcohol (PVA) for various antimicrobial applications in detail. In particular, their ability toward bacterial growth inhibition, in vitro drug release and their biocompatibility toward tissue growth have been investigated in detail.

Design/methodology/approach

Electrospinning technique was adapted for depositing CH/PVA blended nanofilms on the silver foil under optimized conditions of high voltage. Three different concentrations of blended nanofiber samples were prepared and their antimicrobial properties were studied.

Findings

The bead diameter and average diameter of blended nanofibers increase with CH concentration. Antibacterial activity increases as CH concentration increases. Increased hydrophilicity in CH-enriched samples contributes to a higher drug release profile.

Originality/value

To the best of the authors’ knowledge, chick chorioallantoic membrane assay analysis has been carried out for the first time for CH/PVA films which shows that CH/PVA blends are biocompatible. CH after being converted as nanoparticles exhibits higher drug release rate by in vitro method.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

Access

Year

Last 3 months (2)

Content type

1 – 2 of 2