Search results

1 – 10 of 575
Open Access
Article
Publication date: 24 September 2019

Jing Bai, Le Fan, Shuyang Zhang, Zengcui Wang and Xiansheng Qin

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and…

4383

Abstract

Purpose

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and improve the applicability in the field of flexible assembling processing and parts fabrication by developing a more practical parameter identification model.

Design/methodology/approach

The model is developed by considering both geometric parameters and joint stiffness; geometric parameters contain 27 parameters and the parallelism problem between axes 2 and 3 is involved by introducing a new parameter. The joint stiffness, as the non-geometric parameter considered in this paper, is considered by regarding the industrial robot as a rigid linkage and flexible joint model and adds six parameters. The model is formulated as the form of error via linearization.

Findings

The performance of the proposed model is validated by an experiment which is developed on KUKA KR500-3 robot. An experiment is implemented by measuring 20 positions in the work space of this robot, obtaining least-square solution of measured positions by the software MATLAB and comparing the result with the solution without considering joint stiffness. It illustrates that the identification model considering both joint stiffness and geometric parameters can modify the theoretical position of robots more accurately, where the error is within 0.5 mm in this case, and the volatility is also reduced.

Originality/value

A new parameter identification model is proposed and verified. According to the experimental result, the absolute positional accuracy can be remarkably enhanced and the stability of the results can be improved, which provide more accurate parameter identification for calibration and further application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 5 September 2023

Ali Akbar Izadi and Hamed Rasam

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…

Abstract

Purpose

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.

Design/methodology/approach

Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.

Findings

Investigating critical parameters such as Darcy number (10−4DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.

Originality/value

Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Open Access
Article
Publication date: 3 August 2020

Jihad Maulana Akbar and De Rosal Ignatius Moses Setiadi

Current technology makes it easy for humans to take an image and convert it to digital content, but sometimes there is additional noise in the image so it looks damaged. The…

Abstract

Current technology makes it easy for humans to take an image and convert it to digital content, but sometimes there is additional noise in the image so it looks damaged. The damage that often occurs, like blurring and excessive noise in digital images, can certainly affect the meaning and quality of the image. Image restoration is a process used to restore the image to its original state before the image damage occurs. In this research, we proposed an image restoration method by combining Wavelet transformation and Akamatsu transformation. Based on previous research Akamatsu's transformation only works well on blurred images. In order not to focus solely on blurry images, Akamatsu's transformation will be applied based on Wavelet transformations on high-low (HL), low-high (LH), and high-high (HH) subunits. The result of the proposed method will be comparable with the previous methods. PSNR is used as a measure of image quality restoration. Based on the results the proposed method can improve the quality of the restoration on image noise, such as Gaussian, salt and pepper, and also works well on blurred images. The average increase is around 2 dB based on the PSNR calculation.

Details

Applied Computing and Informatics, vol. 19 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 15 December 2020

Tarikul Islam and Armina Akter

Fractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to…

Abstract

Purpose

Fractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to their importance in the nature of real world. In this article, the autors suggest a productive technique, called the rational fractional (DξαG/G)-expansion method, to unravel the nonlinear space-time fractional potential Kadomtsev–Petviashvili (PKP) equation, the nonlinear space-time fractional Sharma–Tasso–Olver (STO) equation and the nonlinear space-time fractional Kolmogorov–Petrovskii–Piskunov (KPP) equation. A fractional complex transformation technique is used to convert the considered equations into the fractional order ordinary differential equation. Then the method is employed to make available their solutions. The constructed solutions in terms of trigonometric function, hyperbolic function and rational function are claimed to be fresh and further general in closed form. These solutions might play important roles to depict the complex physical phenomena arise in physics, mathematical physics and engineering.

Design/methodology/approach

The rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is of the form U(ξ)=i=0nai(DξαG/G)i/i=0nbi(DξαG/G)i.

Findings

Achieved fresh and further abundant closed form traveling wave solutions to analyze the inner mechanisms of complex phenomenon in nature world which will bear a significant role in the of research and will be recorded in the literature.

Originality/value

The rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is newly established and productive.

Open Access
Article
Publication date: 16 August 2022

Ziqiang Lin, Xianchun Liao and Haoran Jia

The decarbonization of power generation is key to achieving carbon neutrality in China by the end of 2060. This paper aims to examine how green finance influences China’s…

2617

Abstract

Purpose

The decarbonization of power generation is key to achieving carbon neutrality in China by the end of 2060. This paper aims to examine how green finance influences China’s low-carbon transition of power generation. Using a provincial panel data set as an empirical study example, green finance is assessed first, then empirically analyses the influences of green finance on the low-carbon transition of power generation, as well as intermediary mechanisms at play. Finally, this paper makes relevant recommendations for peak carbon and carbon neutrality in China.

Design/methodology/approach

To begin with, an evaluation index system with five indicators is constructed with entropy weighting method. Second, this paper uses the share of coal-fired power generation that takes in total power generation as an inverse indicator to measure the low-carbon transition in power generation. Finally, the authors perform generalized method of moments (GMM) econometric model to examine how green finance influences China’s low-carbon transition of power generation by taking advantage of 30 provincial panel data sets, spanning the period of 2007–2019. Meanwhile, the implementation of the 2016 Guidance on Green Finance is used as a turning point to address endogeneity using difference-in-difference method (DID).

Findings

The prosperity of green finance can markedly reduce the share of thermal power generation in total electricity generation, which implies a trend toward China’s low-carbon transformation in the power generation industry. Urbanization and R&D investment are driving forces influencing low-carbon transition, while economic development hinders the low-carbon transition. The conclusions remain robust after a series of tests such as the DID method, instrumental variable method and replacement indicators. Notably, the results of the mechanism analysis suggest that green finance contributes to low-carbon transformation in power generation by reducing secondary sectoral share, reducing the production of export products, promoting the advancement of green technologies and expanding the proportion of new installed capacity of renewable energy.

Research limitations/implications

This paper puts forward relevant suggestions for promoting the green finance development with countermeasures such as allowing low interest rate for renewable energy power generation, facilitating market function and using carbon trade market. Additional policy implication is to promote high quality urbanization and increase R&D investment while pursuing high quality economic development. The last implication is to develop mechanism to strengthen the transformation of industrial structure, to promote high quality trade from high carbon manufactured products to low-carbon products, to stimulate more investment in green technology innovation and to accelerate the greening of installed structure in power generation industry.

Originality/value

This paper first attempts to examine the low-carbon transition in power generation from a new perspective of green finance. Second, this paper analyses the mechanism through several aspects: the share of secondary industry, the output of exported products, advances in green technology and the share of renewable energy in new installed capacity, which has not yet been done. Finally, this study constructs a system of indicators to evaluate green finance, including five indicators with entropy weighting method. In conclusion, this paper provides scientific references for sustainable development in China, and meanwhile for other developing countries with similar characteristics.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Content available
Book part
Publication date: 30 July 2018

Abstract

Details

Marketing Management in Turkey
Type: Book
ISBN: 978-1-78714-558-0

Open Access
Article
Publication date: 14 December 2021

Phillip Baumann and Kevin Sturm

The goal of this paper is to give a comprehensive and short review on how to compute the first- and second-order topological derivatives and potentially higher-order topological…

Abstract

Purpose

The goal of this paper is to give a comprehensive and short review on how to compute the first- and second-order topological derivatives and potentially higher-order topological derivatives for partial differential equation (PDE) constrained shape functionals.

Design/methodology/approach

The authors employ the adjoint and averaged adjoint variable within the Lagrangian framework and compare three different adjoint-based methods to compute higher-order topological derivatives. To illustrate the methodology proposed in this paper, the authors then apply the methods to a linear elasticity model.

Findings

The authors compute the first- and second-order topological derivatives of the linear elasticity model for various shape functionals in dimension two and three using Amstutz' method, the averaged adjoint method and Delfour's method.

Originality/value

In contrast to other contributions regarding this subject, the authors not only compute the first- and second-order topological derivatives, but additionally give some insight on various methods and compare their applicability and efficiency with respect to the underlying problem formulation.

Details

Engineering Computations, vol. 39 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 22 November 2022

Kedong Yin, Yun Cao, Shiwei Zhou and Xinman Lv

The purposes of this research are to study the theory and method of multi-attribute index system design and establish a set of systematic, standardized, scientific index systems…

Abstract

Purpose

The purposes of this research are to study the theory and method of multi-attribute index system design and establish a set of systematic, standardized, scientific index systems for the design optimization and inspection process. The research may form the basis for a rational, comprehensive evaluation and provide the most effective way of improving the quality of management decision-making. It is of practical significance to improve the rationality and reliability of the index system and provide standardized, scientific reference standards and theoretical guidance for the design and construction of the index system.

Design/methodology/approach

Using modern methods such as complex networks and machine learning, a system for the quality diagnosis of index data and the classification and stratification of index systems is designed. This guarantees the quality of the index data, realizes the scientific classification and stratification of the index system, reduces the subjectivity and randomness of the design of the index system, enhances its objectivity and rationality and lays a solid foundation for the optimal design of the index system.

Findings

Based on the ideas of statistics, system theory, machine learning and data mining, the focus in the present research is on “data quality diagnosis” and “index classification and stratification” and clarifying the classification standards and data quality characteristics of index data; a data-quality diagnosis system of “data review – data cleaning – data conversion – data inspection” is established. Using a decision tree, explanatory structural model, cluster analysis, K-means clustering and other methods, classification and hierarchical method system of indicators is designed to reduce the redundancy of indicator data and improve the quality of the data used. Finally, the scientific and standardized classification and hierarchical design of the index system can be realized.

Originality/value

The innovative contributions and research value of the paper are reflected in three aspects. First, a method system for index data quality diagnosis is designed, and multi-source data fusion technology is adopted to ensure the quality of multi-source, heterogeneous and mixed-frequency data of the index system. The second is to design a systematic quality-inspection process for missing data based on the systematic thinking of the whole and the individual. Aiming at the accuracy, reliability, and feasibility of the patched data, a quality-inspection method of patched data based on inversion thought and a unified representation method of data fusion based on a tensor model are proposed. The third is to use the modern method of unsupervised learning to classify and stratify the index system, which reduces the subjectivity and randomness of the design of the index system and enhances its objectivity and rationality.

Details

Marine Economics and Management, vol. 5 no. 2
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 7 April 2015

Yujun Cao, Xin Li, Zhixiong Zhang and Jianzhong Shang

This paper aims to clarify the predicting and compensating method of aeroplane assembly. It proposes modeling the process of assembly. The paper aims to solve the precision…

1446

Abstract

Purpose

This paper aims to clarify the predicting and compensating method of aeroplane assembly. It proposes modeling the process of assembly. The paper aims to solve the precision assembly of aeroplane, which includes predicting the assembly variation and compensating the assembly errors.

Design/methodology/approach

The paper opted for an exploratory study using the state space theory and small displacement torsor theory. The assembly variation propagation model is established. The experiment data are obtained by a real small aeroplane assembly process.

Findings

The paper provides the predicting and compensating method for aeroplane assembly accuracy.

Originality/value

This paper fulfils an identified need to study how the assembly variation propagates in the assembly process.

Details

Assembly Automation, vol. 35 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 575