Search results

1 – 4 of 4
Article
Publication date: 1 March 1999

J.Y.H. Fuh, L. Lu, C.C. Tan, Z.X. Shen and S. Chew

Rapid prototypes formed using stereolithography (SL) method have to undergo post‐curing to increase their strength and rigidity. This study attempts to reduce, if not eliminate…

1927

Abstract

Rapid prototypes formed using stereolithography (SL) method have to undergo post‐curing to increase their strength and rigidity. This study attempts to reduce, if not eliminate, post‐cure distortion by characterising curing behaviours. Curing (both heat and UV initiated) characteristics of an acrylic‐based photopolymer under actual fabrication conditions were studied using Raman spectroscopy as well as differential scanning calorimetry (DSC) and differential scanning photo‐calorimetry (DSP). Specimens of single photopolymer lines were created using a SL machine. Raman spectroscopy was used to quantify the curing percentage at different areas on the cross‐section of these lines. Curing percentages before and after post‐curing were also obtained from the experiments. Difference in percentage of post‐curing gave an indication of the distortions faced. It was found that uncured and partially cured resins trapped within the photopolymer resulted in inhomogeneity of curing in the specimens causing shrinkage and distortion.

Details

Rapid Prototyping Journal, vol. 5 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 October 2002

D. Karalekas and D. Rapti

This paper presents an experimental study undertaken to determine the polymerisation‐induced residual stresses generated in stereolithography (SL) built test specimens, by using…

1049

Abstract

This paper presents an experimental study undertaken to determine the polymerisation‐induced residual stresses generated in stereolithography (SL) built test specimens, by using the hole‐drilling strain gage method of stress relaxation. Experimentally measured strains, using special three‐element strain gage rosettes, were input into the blind‐hole analysis to calculate the induced residual stresses. The mechanical properties of resin specimens fabricated by the solidification process using an epoxy based photopolymer and post‐cured under ultraviolet (UV) and thermal exposure were determined and incorporated into the subsequent drill‐hole analysis. The effect of the pre‐selected fabrication parameters (hatching space and curing depth) and subsequent by the post‐curing procedure (UV, thermal curing) on the magnitude of the recorded strains is also presented.

Details

Rapid Prototyping Journal, vol. 8 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 1997

G. Allen Brady and John W. Halloran

Rapid prototyping of ceramics is accomplished with stereolithography by using an SLA machine to build the ceramic green from a UV‐curable suspension of ceramic powders ‐ a…

2559

Abstract

Rapid prototyping of ceramics is accomplished with stereolithography by using an SLA machine to build the ceramic green from a UV‐curable suspension of ceramic powders ‐ a “ceramic resin”. Objects are later sintered in a separate furnace to complete the process. Aluminium oxide resins based on hexanediol diacrylate are characterized for curing behaviour by photo‐rheology and differential photo calorimetry with a UV lamp, and with an HeCd laser using “windowpanes”, single strings, and walls.

Details

Rapid Prototyping Journal, vol. 3 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2000

J.S. Ullett, J.W. Schultz and R.P. Chartoff

The build characteristics of two liquid crystal (LC) reactive monomers were studied using a table‐top stereolithography apparatus (TTSLA). LC materials contain stiff, rod‐like…

1223

Abstract

The build characteristics of two liquid crystal (LC) reactive monomers were studied using a table‐top stereolithography apparatus (TTSLA). LC materials contain stiff, rod‐like mesogenic segments in their molecules, which can be aligned causing an anisotropy in properties. When cured in the aligned state the anisotropic structure is “locked in” resulting in materials with anisotropic physical and mechanical properties. By varying the alignment of layers, properties such as thermal expansion coefficient can be optimized. High heat distortion (or glass transition) temperatures are possible depending on the monomer chemical structure. Working curves for the LC resins were developed under various conditions. A permanent magnet placed outside the TTSLA vat was used to uniformly align the monomer in the nematic state. Photo‐initiator type and content; alignment of the nematic phase; and operating conditions affected the working curve parameters. Glass transition temperatures of post‐cured parts ranged from 75 to 1488C depending on the resin and processing conditions. Mechanical analysis data revealed a factor of two difference between glassy moduli measured in the molecular alignment versus the transverse alignment directions. Based on these initial studies, more advanced resins with higher glass transitions are being developed at the University of Dayton.

Details

Rapid Prototyping Journal, vol. 6 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4