Search results

1 – 10 of 19
Article
Publication date: 20 October 2023

Sapna Pandit, Pooja Verma, Manoj Kumar and Poonam

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential…

Abstract

Purpose

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential quadrature method (LRBF-DQM) to simulate the multidimensional hyperbolic wave models and work is an extension of Jiwari (2015).

Design/methodology/approach

In the evolvement of the first algorithm, the time derivative is discretized by the forward FD scheme and the Crank-Nicolson scheme is used for the rest of the terms. After that, the LRBF-FD approximation is used for spatial discretization and quasi-linearization process for linearization of the problem. Finally, the obtained linear system is solved by the LU decomposition method. In the development of the second algorithm, semi-discretization in space is done via LRBF-DQM and then an explicit RK4 is used for fully discretization in time.

Findings

For simulation purposes, some 1D and 2D wave models are pondered to instigate the chastity and competence of the developed algorithms.

Originality/value

The developed algorithms are novel for the multidimensional hyperbolic wave models. Also, the stability analysis of the second algorithm is a new work for these types of model.

Article
Publication date: 26 December 2023

Ting Dai and Chang Tao

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but…

Abstract

Purpose

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but also changes along time. A thermal conductivity prediction model for aerogel considering heat treatment effect is carried out and applied to solve the heat conduction problem of a TPS. The aim of this study is to provide theoretical and numerical references for further development of aerogels applying to TPSs.

Design/methodology/approach

A thermal conductivity prediction model for aerogel is established considering treatment effect. The heat conduction problem of a TPS is derived and solved by combining the differential quadrature method and the Runge–Kutta method. The prediction results of aerogel thermal conductivities are verified by comparing with those in literature, while the calculated temperature field of TPS is verified by comparing with that by ABAQUS.

Findings

Numerical results show that when applying the current prediction model, the calculated high temperature area in the aerogel layer is narrowed due to the decrease of the thermal conductivity during heat treatment process.

Originality/value

This study will be beneficial to carry out the precise design of TPS for long endurance HFVs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2023

Mohammad Hadi Moradi and Mehdi Ranjbar-Roeintan

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing…

Abstract

Purpose

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing piezoelectric layers.

Design/methodology/approach

A unit cell shall be taken into account for the simulation of BNNT's volume fraction. A rectangular micromechanical model is used to obtain the mechanical properties of unit cell of piezoelectric fiber-reinforced composite (PFRC). The three-dimensional (3D) elasticity method is presented to provide the relationship between displacements and stresses. The one-dimensional differential quadrature method (1D-DQM) and the state-space methodology are combined to create the semi-analytical technique. The state-space approach is utilized to implement an analytical resolution in the thickness direction, and 1D-DQM is used to implement an approximation solution in the radial direction. The composite consists of a polyvinylidene fluoride (PVDF) matrix and BNNTs as reinforcement.

Findings

A study on the PFRC is carried, likewise, the coefficients of its properties are obtained using a micro-electromechanical model known as the rectangular model. To implement the DQM, the plate was radially divided into sample points, each with eight state variables. The boundary situation and DQM are used to discretize the state-space equations, and the top and bottom application surface conditions are used to determine the natural frequencies of the plate. The model's convergence is assessed. Additionally, the dimensionless frequency is compared to earlier works and ABAQUS simulation in order to validate the model. Finally, the effects of the thickness, lateral wavenumber, boundary conditions and BNNT volume fraction on the annular plate's free vibration are investigated. The important achievements are that increasing the volume fraction of BNNTs increases the natural frequency.

Originality/value

The micromechanical “XY rectangle” model in PFRC along with the three-dimensional elasticity model is used in this literature to assess how the piezoelectric capabilities of BNNTs affect the free vibration of polymer-based composite annular plates under various boundary conditions.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 November 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Shurooq Kamel Abd Al-Khafaji

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is…

Abstract

Purpose

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is the main aim of most researchers. This paper devotes to developing a novel spectral algorithm to solve the FitzHugh–Nagumo models with space fractional derivatives.

Design/methodology/approach

The fractional derivative is defined based upon the Riesz derivative. First, a second-order finite difference formulation is used to approximate the time derivative. Then, the Jacobi spectral collocation method is employed to discrete the spatial variables. On the other hand, authors assume that the approximate solution is a linear combination of special polynomials which are obtained from the Jacobi polynomials, and also there exists Riesz fractional derivative based on the Jacobi polynomials. Also, a reduced order plan, such as proper orthogonal decomposition (POD) method, has been utilized.

Findings

A fast high-order numerical method to decrease the elapsed CPU time has been constructed for solving systems of space fractional PDEs.

Originality/value

The spectral collocation method is combined with the POD idea to solve the system of space-fractional PDEs. The numerical results are acceptable and efficient for the main mathematical model.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

46

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

198

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 September 2023

Jun-Hui Chai, Jun-Ping Zhong, Bo Xu, Zi-Jian Zhang, Zhengxiang Shen, Xiao-Long Zhang and Jian-Min Shen

The high-pressure accumulator has been widely used in the hydraulic system. Failure pressure prediction is crucial for the safe design and integrity assessment of the…

Abstract

Purpose

The high-pressure accumulator has been widely used in the hydraulic system. Failure pressure prediction is crucial for the safe design and integrity assessment of the accumulators. The purpose of this study is to accurately predict the burst pressure and location for the accumulator shells due to internal pressure.

Design/methodology/approach

This study concentrates the non-linear finite element simulation procedure, which allows determination of the burst pressure and crack location using extensive plastic straining criterion. Meanwhile, the full-scale hydraulic burst test and the analytical solution are conducted for comparative analysis.

Findings

A good agreement between predicted and measured the burst pressure that was obtained, and the predicted failure point coincided very well with the fracture location of the actual shell very well. Meanwhile, the burst pressure of the shells increases with wall thickness, independent of the length. It can be said that the non-linear finite element method can be employed to predict the failure behavior of a cylindrical shell with sufficient accuracy.

Originality/value

This paper can provide a designer with additional insight into how the pressurized hollow cylinder might fail, and the failure pressure has been predicted accurately with a minimum error below 1%, comparing the numerical results with experimental data.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 June 2023

Sara Armou, Mustapha Ait Hssain, Soufiane Nouari, Rachid Mir and Kaoutar Zine-Dine

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled…

Abstract

Purpose

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled horizontal channel, using a Cu-H2O nanofluid under mixed convection and laminar flow.

Design/methodology/approach

The mathematical model is two-dimensional and comprises a system of four governing equations, such as the conservation of continuity, momentum and energy. To obtain numerical solutions for these equations, the finite volume method was used for discretization. A validation process was performed by comparing this study’s results with those of previously published studies. The comparison revealed a close agreement. The numerical study was performed for a wide range of key parameters: The baffle height (0 ≤ h ≤ 0.7), the spacing distance between baffle and blocks (0.25 ≤ w ≤ 3), the Grashof and Reynolds numbers are kept equal to 104 and 75, respectively, the channel aspect ratio is L/H = 10, and the volume fraction of Cu nanoparticles is fixed at φ = 5%.

Findings

The results of the study reveal a significant improvement in heat transfer in terms of total Nusselt number of the top and bottom hot components, which exhibited an improvement of 16.89% and 17.23% when the baffle height increases from h = 0 to h = 0.7. Additionally, the study found that reducing the distance between the baffle and the electronic components up to a certain limit can improve the heat transfer rate. Therefore, the optimal height of the baffle was found to be no lower than 0.6, and the recommended distance between the heaters and the baffle was 0.5.

Originality/value

This study provides valuable insights into the optimization of the design of baffled channels for improved heat transfer performance. The findings of study can be used to improve heat exchangers and cooling systems in various applications. The use of Cu-H2O nanofluid under mixed convection and laminar flow conditions in channel with baffle and electronic components is also unique, making this study an original contribution to the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2024

Manar Hamid Jasim and Ali Mohammed Ali Al-Araji

The purpose of this study is to model the theory of the low-velocity impact (LVI) process on sandwich beams consisting of flexible cores and face sheets reinforced with…

Abstract

Purpose

The purpose of this study is to model the theory of the low-velocity impact (LVI) process on sandwich beams consisting of flexible cores and face sheets reinforced with functionally graded carbon nanotubes (CNTs).

Design/methodology/approach

A series of parameters derived from molecular dynamics are used to consider the size scale in the mixture rule for the combination of CNTs and resin. A procedure involving the use of the first-order shear deformation theory of the beam is used to provide the displacement field of the sandwich beam. The energy method and subsequently the generalized Lagrange method are used to derive the motion equations. Due to the use of Hertz’s nonlinear theory to calculate the contact force, the equations of motion are nonlinear. Validation of the problem is carried out by comparing natural frequencies with other papers.

Findings

The influence of a series of parameters such as CNTs distributions pattern in the face sheets, the influence of the CNTs volume fraction and the influence of the core thickness to the face sheets thickness ratio in the issue of LVI on sandwich beams with clamped-clamped boundary conditions is investigated. The result shows that the type of CNTs pattern in the face sheet and the CNTs volume fraction have a very important effect on the answer to the problem, which is caused by the change in the value of the Young’s modulus of the beam at the contact surface. Changes in the core thickness to the face sheets thickness ratio has little effect on the impact response.

Originality/value

Considering the important application of sandwich structures in vehicles, aviation and ships, in this research, sandwich beams consisting of flexible core and CNTs-reinforced face sheets are investigated under LVI.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 March 2024

Atifa Kanwal, Ambreen A. Khan, Sadiq M. Sait and R. Ellahi

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid…

Abstract

Purpose

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid. This study aims to highlight the effects of varying density of particles in a fluid. The fluid flows through a wavy curved passage under an applied magnetic field. Heat transfer is discussed with variable thermal conductivity.

Design/methodology/approach

The mathematical model of the problem consists of coupled differential equations, simplified using stream functions. The results of the time flow rate for fluid and solid granules have been derived numerically.

Findings

The fluid and dust particle velocity profiles are being presented graphically to analyze the effects of density of solid particles, magnetohydrodynamics, curvature and slip parameters. Heat transfer analysis is also performed for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter and curvature. As the number of particles in the fluid increases, heat conduction becomes slow through the fluid. Increase in temperature distribution is noticed as variable thermal conductivity parameter grows. The discussion of variable thermal conductivity is of great concern as many biological treatments and optimization of thermal energy storage system’s performance require precise measurement of a heat transfer fluid’s thermal conductivity.

Originality/value

This study of heat transfer with inhomogeneous distribution of the particles in a fluid has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 19