Search results

1 – 10 of 562
Article
Publication date: 17 April 2024

Cheng Xiong, Bo Xu and Zhenqian Chen

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Abstract

Purpose

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Design/methodology/approach

In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.

Findings

The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.

Originality/value

This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2024

Weijie Zhou, Tao Wang, Jianhua Zhu, Yuan Tao and Qingzhi Liu

This paper aims to investigate how perceived working conditions affect employee performance, including safety compliance and task performance, through employee well-being (i.e…

Abstract

Purpose

This paper aims to investigate how perceived working conditions affect employee performance, including safety compliance and task performance, through employee well-being (i.e. job satisfaction) in the context of the coal mining sector in China.

Design/methodology/approach

This paper uses the job demands-resources model to test the relationships between working conditions, including job demands (work pressure as a challenge demand and perceived risks and hazards in the workplace and ineffectiveness of the safety system as hindrance demands), job resources (interpersonal harmony), job satisfaction and performance. This study adopts a two-wave design with a three-month lag to reduce possible common method bias.

Findings

Employees who experienced high level of challenge demands, e.g. time pressure workload, reported higher levels of task performance, and this positive relationship seemed to be robust. There is a direct effect of perceived ineffectiveness of the safety system on task performance, while the relationship between perceived risks and hazards and task performance was fully mediated by job satisfaction. Challenge demands, i.e. work pressure, did not impact much on employees’ well-being, and thus job satisfaction did not mediate the relationship between work pressure and performance. Perceived ineffectiveness of the safety system was negatively associated with safety compliance. This result is not surprising since a lack of effective safety system reflects management’s ignorance of workplace safety, which demotivates employees to enact safe behaviors. In contrast, the presence and implementation of an effective safety system would be interpreted by employees as management exhibiting a high level of commitment. Work pressure was positively not negatively related to safety compliance. One possible explanation for this finding is that the effects of work pressure on safety compliance behaviors might be dependent on contextual factors such as safety climate. Interpersonal harmony moderated the relationships between work pressure and employee performance (both safety compliance and task performance) and the relationship between perceived risks and hazards and task performance, but the role of interpersonal harmony appeared more complex. There was no significant correlation between challenging job demands and individual employee performance when there were higher levels of interpersonal harmony. The relationship between perceived risks and hazards, a hindrance job demand and task performance became positive as interpersonal harmony increased but negative as interpersonal harmony decreased.

Originality/value

This paper provides a robust integrative theoretical framework that better explains the various types of job demands and job resources in the working environment of coal mining sector in China and their relationships to employee performance. The findings also offer valuable guidance for managers trying to identify effective ways to enhance employee performance and safety in the workplace.

Details

Chinese Management Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 9 January 2024

Kathiravan Balusamy, Vinothraj A. and Suresh V.

The purpose of this study is to explore the effects of aerospike and hemispherical aerodisks on flow characteristics and drag reduction in supersonic flow over a blunt body…

Abstract

Purpose

The purpose of this study is to explore the effects of aerospike and hemispherical aerodisks on flow characteristics and drag reduction in supersonic flow over a blunt body. Specifically, the study aims to analyze the impact of varying the length of the cylindrical rod in the aerospike (ranging from 0.5 to 2.0 times the diameter of the blunt body) and the diameter of the hemispherical disk (ranging from 0.25 to 0.75 times the blunt body diameter). CFD simulations were conducted at a supersonic Mach number of 2 and a Reynolds number of 2.79 × 106.

Design/methodology/approach

ICEM CFD and ANSYS CFX solver were used to generate the three-dimensional flow along with its structures. The flow structure and drag coefficient were computed using Reynolds-averaged Navier–Stokes equation model. The drag reduction mechanism was also explained using the idea of dividing streamline and density contour. The performance of the aero spike length and the effect of aero disk size on the drag are investigated.

Findings

The separating shock is located in front of the blunt body, forming an effective conical shape that reduces the pressure drag acting on the blunt body. It was observed that extending the length of the spike beyond a specific critical point did not impact the flow field characteristics and had no further influence on the enhanced performance. The optimal combination of disk and spike length was determined, resulting in a substantial reduction in drag through the introduction of the aerospike and disk.

Research limitations/implications

To predict the accurate results of drag and to reduce the simulation time, a hexa grid with finer mesh structure was adopted in the simulation.

Practical implications

The blunt nose structures are primarily employed in the design of rockets, missiles, and re-entry capsules to withstand higher aerodynamic loads and aerodynamic heating.

Originality/value

For the optimized size of the aero spike, aero disk is also optimized to use the benefits of both.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 April 2024

Hangyue Zhang, Yanchu Yang and Rong Cai

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further…

Abstract

Purpose

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further ascent motion after airborne launching. In terms of unmanned aerial vehicles (UAVs), the tailspin state and the charge-out process with an anti-tailspin parachute-assisted suspending are analyzed. Then, the authors conduct trajectory optimization simulations for the long-distance gliding process.

Design/methodology/approach

The balloon kinematics model and the parachute Kane multibody dynamic model are established. Using steady-state tailspin to reduced-order analysis and achieving change-out simulation by parachute suspension dynamic model. A reentry optimization control problem is developed and the Radau pseudo-spectral method is used to calculate the glide trajectory.

Findings

The established dynamic model and trajectory optimization method can effectively simulate the motion process of balloons and UAVs. The system mass reduction for launching UAVs will not cause damage to the balloon structure. The anti-tailspin parachute can reduce the UAV attack angles effectively. The UAV can glide to the designated target position by adjusting the attack angle and sideslip angle. The farthest flight distance after launching from 20 km height is 94 km and the gliding time is 40 min, which demonstrates the potential application advantage of high-altitude launching.

Practical implications

The research content and related conclusions of this article achieve a closed-loop analysis of the flight mission chain for the “balloon-borne UAV system,” which provides simulation references for relevant balloon launching experiments.

Originality/value

This paper establishes a complete set of numerical simulation models and can effectively analyze various postlaunching behaviors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric…

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 April 2024

Andrew Swan, Anne Schiffer, Peter Skipworth and James Huntingdon

This paper aims to present a literature review of remote monitoring systems for water infrastructure in the Global South.

Abstract

Purpose

This paper aims to present a literature review of remote monitoring systems for water infrastructure in the Global South.

Design/methodology/approach

Following initial scoping searches, further examination was made of key remote monitoring technologies for water infrastructure in the Global South. A standard literature search methodology was adopted to examine these monitoring technologies and their respective deployments. This hierarchical approach prioritised “peer-reviewed” articles, followed by “scholarly” publications, then “credible” information sources and, finally, “other” relevant materials. The first two search phases were conducted using academic search services (e.g. Scopus and Google Scholar). In the third and fourth phases, Web searches were carried out on various stakeholders, including manufacturers, governmental agencies and non-governmental organisations/charities associated with Water, Sanitation and Hygiene (WASH) in the Global South.

Findings

This exercise expands the number of monitoring technologies considered in comparison to earlier review publications. Similarly, preceding reviews have largely focused upon monitoring applications in sub-Saharan Africa (SSA). This paper explores opportunities in other geographical regions and highlights India as a significant potential market for these tools.

Research limitations/implications

This review predominantly focuses upon information/data currently available in the public domain.

Practical implications

Remote monitoring technologies enable the rapid detection of broken water pumps. Broken water infrastructure significantly impacts many vulnerable communities, often leading to the use of less protected water sources and increased exposure to water-related diseases. Further to these public health impacts, there are additional economic disadvantages for these user communities.

Originality/value

This literature review has sought to address some key technological omissions and to widen the geographical scope associated with previous investigations.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 21 September 2023

Renan Favarão da Silva and Gilberto Francisco Martha de Souza

The Maintenance Management Framework for Asset Management (MMFAM) is a recently modeled framework to ensure the alignment of maintenance management with physical asset management…

Abstract

Purpose

The Maintenance Management Framework for Asset Management (MMFAM) is a recently modeled framework to ensure the alignment of maintenance management with physical asset management based on the ISO 55000 series for asset management. In this context, the purpose of this paper is to discuss the applicability of the MMFAM considering the operational context of a hydroelectric power plant.

Design/methodology/approach

The paper adopted the case study method for the discussion of the applicability of the MMFAM to a real operational context. A hydroelectric power plant was chosen as the scope of the case study due to its relevance since the electricity sector is an example of an asset-intensive industry in which asset management performance is fundamental. To gain a detailed understanding of the organization, data were collected through direct requests to the plant, informal meetings with technical collaborators, a technical visit to the hydroelectric plant and on-site data collection. Then, the MMFAM processes were demonstrated based on this information and the results supported the discussion of the MMFAM applicability.

Findings

The case study provided a deeper understanding of the processes included in the MMFAM. In addition, the results suggested the applicability of the framework to other organizations besides the hydroelectric sector due to its generic approach and the possibility of choosing appropriate tools to support and implement the MMFAM processes.

Practical implications

The case study is expected to contribute to the practical understanding of the MMFAM processes within an operational context and assist maintenance professionals and researchers in their implementation in other organizations.

Originality/value

Although the literature provides different maintenance management frameworks, their practical discussion based on a real operational context is still a gap. Accordingly, this paper discusses the MMFAM under a case study method to expand its understanding beyond theory and contribute to practical comprehension in depth.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 28 February 2024

Hassan Th. Alassafi, Khalid S. Al-Gahtani, Abdulmohsen S. Almohsen and Abdullah M. Alsugair

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues…

Abstract

Purpose

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues, causing service disruptions and cost overruns. These defects can be avoided if a link between the early design stages and maintenance feedback is established. This study aims to use experts’ experience in HVAC maintenance in health-care facilities to list and evaluate the risk of each maintenance issue caused by a design defect, supported by the literature.

Design/methodology/approach

Following semistructured interviews with experts, 41 maintenance issues were identified as the most encountered issues. Subsequently, a survey was conducted in which 44 participants evaluated the probability and impact of each design-caused issue.

Findings

Chillers were identified as the HVAC components most prone to design defects and cost impact. However, air distribution ducts and air handling units are the most critical HVAC components for maintaining healthy conditions inside health-care facilities.

Research limitations/implications

The unavailability of comprehensive data on the cost impacts of all design-related defects from multiple health-care facilities limits the ability of HVAC designers to furnish case studies and quantitative approaches.

Originality/value

This study helps HVAC designers acquire prior knowledge of decisions that may have led to unnecessary and avoidable maintenance. These design-related maintenance issues may cause unfavorable health and cost consequences.

Article
Publication date: 19 April 2024

Oguzhan Ozcelebi, Jose Perez-Montiel and Carles Manera

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic…

Abstract

Purpose

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic and foreign financial stress in terms of money market have substantial effects on exchange market, this paper aims to investigate the impacts of the bond yield spreads of three emerging countries (Mexico, Russia, and South Korea) on their exchange market pressure indices using monthly observations for the period 2010:01–2019:12. Additionally, the paper analyses the impact of bond yield spread of the US on the exchange market pressure indices of the three mentioned emerging countries. The authors hypothesized whether the negative and positive changes in the bond yield spreads have varying effects on exchange market pressure indices.

Design/methodology/approach

To address the research question, we measure the bond yield spread of the selected countries by using the interest rate spread between 10-year and 3-month treasury bills. At the same time, the exchange market pressure index is proxied by the index introduced by Desai et al. (2017). We base the empirical analysis on nonlinear vector autoregression (VAR) models and an asymmetric quantile-based approach.

Findings

The results of the impulse response functions indicate that increases/decreases in the bond yield spreads of Mexico, Russia and South Korea raise/lower their exchange market pressure, and the effects of shocks in the bond yield spreads of the US also lead to depreciation/appreciation pressures in the local currencies of the emerging countries. The quantile connectedness analysis, which allows for the role of regimes, reveals that the weights of the domestic and foreign bond yield spread in explaining variations of exchange market pressure indices are higher when exchange market pressure indices are not in a normal regime, indicating the role of extreme development conditions in the exchange market. The quantile regression model underlines that an increase in the domestic bond yield spread leads to a rise in its exchange market pressure index during all exchange market pressure periods in Mexico, and the relevant effects are valid during periods of high exchange market pressure in Russia. Our results also show that Russia differs from Mexico and South Korea in terms of the factors influencing the demand for domestic currency, and we have demonstrated the role of domestic macroeconomic and financial conditions in surpassing the effects of US financial stress. More specifically, the impacts of the domestic and foreign financial stress vary across regimes and are asymmetric.

Originality/value

This study enriches the literature on factors affecting the exchange market pressure of emerging countries. The results have significant economic implications for policymakers, indicating that the exchange market pressure index may trigger a financial crisis and economic recession.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

1 – 10 of 562