Search results

1 – 10 of 29
Article
Publication date: 27 January 2012

Chaoyu Zhu and Naiming Xie

The purpose of this paper is to propose a model for effective data filling and precise prediction, which is used to solve the prediction problem of sequential data with the…

266

Abstract

Purpose

The purpose of this paper is to propose a model for effective data filling and precise prediction, which is used to solve the prediction problem of sequential data with the characteristics of poor information, high growth and containing extraordinary points.

Design/methodology/approach

After proving that the three principles of smooth sequence are not a sufficient condition for the judgement of sequence smoothness, judgement rules for sequence smoothness based on smoothness efficiency is introduced. Based on the non‐homogenous discrete grey model (NDGM) model which fits for high growth sequence, model error caused by equal weight mean value is analyzed, and mean value generation weight efficiency is optimized by the method of differential. Prediction steps that fit sequences with high growth, poor information and containing extraordinary points is established on the basis of equal weight mean value generation efficiency.

Findings

The results are convincing: previous judgement rules used for sequence smoothness do not fit for the high growth sequence, new judgement rules introduced are more effective for high growth sequence. Sequence filling algorithm based on differential ration not only improve the filling of high growth sequence, but also enhance the prediction precision of these sequences.

Practical implications

The method exposed in the paper can be used to solve the prediction problem of sequences with poor information, high growth and containing extraordinary points, and it was proved in the cases of large and medium company new products income and Ufida Software Company. What is more, the method is also helpful in aspects of corporate financial control and strategy‐making process.

Originality/value

The paper succeeds in proposing a new interpolation algorithm that is superior to ordinary mean value generation method in the aspects of generation and prediction and to grey interpolation algorithm in the aspect of information volume by defining sequence smoothness efficiency and introducing smoothness judgement rules that are easy to compute and fits for high growth sequence and not limited to monotonicity sequence.

Details

Grey Systems: Theory and Application, vol. 2 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 17 December 2019

B.J. Gireesha and S. Sindhu

Fully developed Casson fluid flow through vertical microchannel is deliberated in the presence of thermal radiation. The two predominant features of micro scale phenomenon such as…

Abstract

Purpose

Fully developed Casson fluid flow through vertical microchannel is deliberated in the presence of thermal radiation. The two predominant features of micro scale phenomenon such as velocity slip and temperature jump are considered. The paper aims to discuss this issue.

Design/methodology/approach

The governing equations of the physical phenomenon are solved using Runge–Kutta–Fehlberg fourth fifth order method.

Findings

The outcome of the present work is discussed through graphs. This computation shows that entropy generation rate decreases with enhancing wall ambient temperature difference ratio and fluid wall interaction parameter. Also, it is found that Bejan number is fully retarded with rise in fluid wall interaction parameter. Enhancement in heat transfer or Nusselt number is achieved by increasing the wall ambient temperature ratio and fluid wall interaction parameter.

Originality/value

Casson liquid flow through microchannel is analyzed by considering temperature jump and velocity slip. This computation shows that entropy generation rate decreases with enhancing wall ambient temperature difference ratio.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Abstract

Details

Energy Economics
Type: Book
ISBN: 978-1-78756-780-1

Article
Publication date: 2 January 2020

A. Roja and B.J. Gireesha

Microfluidics is one of the extensive elaborated technologies in thermal and engineering fields due to its wide range of applications, such as micro heat exchangers, micro mixture…

Abstract

Purpose

Microfluidics is one of the extensive elaborated technologies in thermal and engineering fields due to its wide range of applications, such as micro heat exchangers, micro mixture and microchannel heat sinks, which is used to develop a large number of microscopic devices and systems. Enhancement of thermal energy using verity of nanoliquids is one of the challenges in these applications of microfluidics. Therefore, using single wall carbon nanotubes for enhancement of thermal energy in microchannel is the main purpose of this study. Hall effect of natural convection flow in a vertical channel with slip and temperature jump condition is considered. The impacts of radiative heat flux, uniform heat source/sink, viscous dissipation and joule heating are also taken into account.

Design/methodology/approach

Suitable non-dimension variables are applied to the governing equations to reduce the system into ordinary differential equations. The reduced nonlinear system is then solved numerically using Runge–Kutta–Fehlberg fourth–fifth-order method along with shooting technique. The impact of different pertinent parameters on numerical solutions of primary velocity, secondary velocity, temperature, entropy generation and Bejan number is comprehensively discussed in detail. Also, the obtained numerical results are compared with existing one which perfectly found to be in good agreement.

Findings

It is established that, with the aspects of Joule heating, viscous dissipation, radiative heat flux and uniform heat source/sink, the production in the entropy can be improved. Further, it is found that the increasing ratio of wall ambient temperature difference and nanoparticle volume fraction leads to enhance the entropy generation. The same effect reverses with increasing values of fluid wall interaction parameter (FWIP) and rare faction. The irreversibility ratio enhances with larger values of nanoparticle volume fraction and decelerates with increment values of FWIP.

Originality/value

The impact of single wall carbon nanoliquid in a vertical channel flow by using radiative heat flux, heat source/sink, joule heating and viscous dissipation is first time investigated. Further, the influence of Hall current is explored in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2023

Muhammad Faisal, Iftikhar Ahmad and Abdur Rashid

The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and…

Abstract

Purpose

The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and entropy generation. Brick-shaped nanoparticles (zinc-oxide and ceria) are suspended in water, serving as the base-fluid to observe the performance of the hybrid mixture. The Maxwell thermal conductivity relation is employed to link the thermophysical attributes of the hybrid mixture with the host liquid. Additionally, a heat source/sink term is incorporated in the energy balance to enhance the impact of the investigation. Both prescribed-surface-temperature (PST) and prescribed-heat-flux (PHF) conditions are applied to inspect the thermal performance of the hybrid nanofluid.

Design/methodology/approach

The transport equations in Cartesian configuration are transformed into ordinary differential equations (ODEs), and an efficient method, namely the Keller-Box method (KBM), is utilized to solve the transformed system. Postprocessing is conducted to visually represent the velocity profile, thermal distribution, skin-friction coefficients, Bejan number, Nusselt number and entropy generation function against the variations of the involved parameters.

Findings

It is observed that more entropy is generated due to the increases in temperature difference and radiation parameters. The Bejan number initially declines but then improves with higher estimations of unsteadiness and Hartmann number. Overall, the thermal performance of the system is developed for the PST scenario than the PHF scenario for different estimations of the involved constraints.

Originality/value

To the best of the authors' knowledge, no investigation has been reported yet that explains the bidirectional flow of a CeO2-ZnO/water hybrid nanofluid with the combined effects of prescribed thermal aspects (PST and PHF) and entropy generation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 April 2017

Jawali Umavathi, Jada Prathap Kumar, Ioan Pop and Murudappa Shekar

The purpose of this paper is to consider the problem of fully developed laminar mixed convection flow of a couple stress fluid in a vertical channel with the third-kind boundary…

Abstract

Purpose

The purpose of this paper is to consider the problem of fully developed laminar mixed convection flow of a couple stress fluid in a vertical channel with the third-kind boundary conditions in the presence or absence of heat source/sink effect.

Design/methodology/approach

Through proper choice of dimensionless variables, the governing equations are developed. These governing equations are solved analytically by the differential transform method and numerically by the Runge–Kutta shooting method. Analytical solutions for the velocity and temperature profiles for heat generation and absorption of the problem are reported.

Findings

The mass flow rate and Nusselt numbers at both the left and right channel walls on mixed convection parameter, Brinkman number, couple stress parameter and heat generation/absorption parameter for equal and unequal Biot numbers are presented. Favorable comparisons of special cases with previously published work are obtained. It is found that velocity, temperature, mass flow rate and Nusselt number decrease with couple stress parameter and increase with mixed convection parameter and Brinkman number.

Originality/value

The work done in this paper is not done earlier to the authors’ knowledge. This is the first paper in which the sixth-order differential equation is solved using the semi-numerical method, which is a differential method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 May 2020

A. Roja, B.J. Gireesha and B.C. Prasannakumara

Miniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat…

Abstract

Purpose

Miniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat exchangers, micro mixers, micropumps, cooling microelectro mechanical devices, etc. In addition to this, the minimization of the entropy is the utilization of the energy of thermal devices. Based on this, in the present investigation, micropolar nanofluid flow through an inclined channel under the impacts of viscous dissipation and mixed convection with velocity slip and temperature jump has been numerically studied. Also the influence of magnetism and radiative heat flux is used.

Design/methodology/approach

The nonlinear system of ordinary differential equations are obtained by applying suitable dimensionless variables to the governing equations, and then the Runge–Kutta–Felhberg integration scheme is used to find the solution of velocity and temperature. Entropy generation and Bejan number are calculated via using these solutions.

Findings

It is established to notice that the entropy generation can be improved with the aspects of viscous dissipation, magnetism and radiative heat flux. The roles of angle of inclination (α), Eckert number (Ec), Reynolds number (Re), thermal radiation (Rd), material parameter (K),  slip parameter (δ), microinertial parameter (aj), magnetic parameter (M), Grashof number (Gr) and pressure gradient parameter (A) are demonstrated. It is found that the angle of inclination and Grashof number enhances the entropy production while it is diminished with material parameter and magnetic parameter.

Originality/value

Electrically conducting micropolar nanofluid flow through an inclined channel subjected to the friction irreversibility with temperature jump and velocity slip under the influence of radiative heat flux has been numerically investigated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Content available
Book part
Publication date: 15 November 2018

Yi-Ming Wei and Hua Liao

Abstract

Details

Energy Economics
Type: Book
ISBN: 978-1-78756-780-1

Article
Publication date: 2 November 2010

Esmail M.A. Mokheimer

The aim of this article is to present the results of a parametric analysis of the entropy generation due to mixed convection in the entry‐developing region between two…

Abstract

Purpose

The aim of this article is to present the results of a parametric analysis of the entropy generation due to mixed convection in the entry‐developing region between two differentially heated isothermal vertical plates.

Design/methodology/approach

The entropy generation was estimated via a numerical solution of the mass, momentum and energy conservation equations governing the flow and heat transfer in the vertical channel between the two parallel plates. The resultant temperature and velocity profiles were used to estimate the entropy generation and other heat transfer parameters over a wide range of the operating parameters. The investigated parameters include the buoyancy parameter (Gr/Re), Eckert number (Ec), Reynolds number (Re), Prandtl number (Pr) and the ratio of the dimensionless temperature of the two plates (θT).

Findings

The optimum values of the buoyancy parameter (Gr/Re) optimum at which the entropy generation assumes its minimum for the problem under consideration have been obtained numerically and presented over a wide range of the other operating parameters. The effect of the other operating parameters on the entropy generation is presented and discussed as well.

Research limitations/implications

The results of this investigation are limited to the geometry of vertical channel parallel plates under isothermal boundary conditions. However, the concept of minimization of entropy generation via controlling the buoyancy parameter is applicable for any other geometry under any other thermal boundary conditions.

Practical implications

The results presented in this paper can be used for optimum designs of heat transfer equipment based on the principle of entropy generation minimization with particular focus on the optimum design of plate and frame heat exchanger and the optimization of electronic packages and stacked packaging of laminar‐convection‐cooled printed circuits.

Originality/value

This paper introduces the entropy generation minimization via controlling the operating parameters and clearly identifies the optimum buoyancy parameter (Gr/Re) at which entropy generation assumes its minimum under different operating conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 2020

Reza Aghaei Togh and Mohammad Mahdi Karimi

This paper aims to present the designing and investigating various types of impulse blade profiles to find the optimal profile that has better performance than the first or…

Abstract

Purpose

This paper aims to present the designing and investigating various types of impulse blade profiles to find the optimal profile that has better performance than the first or original blade. The studied model is a turbine with an output power below 1 MW and a large pressure ratio up to 20, which is used to gain relatively high specific work output. As a result of its low mass flow rate, the turbine is used under partial-admission conditions. The turbine’s stator is a group of convergence–divergence nozzles that provide supersonic flow.

Design/methodology/approach

More than 10 types of two-dimensional blade profiles were designed using the developed preliminary design calculations and numerical analysis. The numerical results are validated using the existing experimental results. Finally, the case with improved performance is introduced as the final optimum case.

Findings

It was found that the performance parameters such as efficiency, power and torque are increased by more than 8% in the selected best model, in comparison with the original model. Moreover, the total pressure loss is 12% decreased for the selected model. Finally, the selected profile with superior performance is proposed.

Originality/value

Simultaneous numerical tests are conducted to examine the interaction of different supersonic blade profiles with the partially injected flow to the rotor.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 29