Search results

1 – 10 of 660
Article
Publication date: 12 June 2017

A.S. Tonkoshkur, A.B. Glot and A.V. Ivanchenko

The purpose of this paper is to develop the models of the dielectric permittivity dispersion of heterogeneous systems based on semiconductors to a level that would allow to apply…

Abstract

Purpose

The purpose of this paper is to develop the models of the dielectric permittivity dispersion of heterogeneous systems based on semiconductors to a level that would allow to apply effectively the method of broadband dielectric spectroscopy for the study of electronic processes in ceramic and composite materials.

Design/methodology/approach

The new approach for determining the complex dielectric permittivity of heterogeneous systems with semiconductor particles is used. It includes finding the analytical expression of the effective dielectric permittivity of the separate semiconductor particle of spherical shape. This approach takes into account the polarization of the free charge carriers in this particle, including capturing to localized electron states. This enabled the authors to use the known equations for complex dielectric permittivity of two-component matrix systems and statistical mixtures.

Findings

The presented dispersion equations establish the relationship between the parameters of the dielectric spectrum and electronic processes in the structures like semiconductor particles in a dielectric matrix in a wide frequency range. Conditions of manifestation and location of the different dispersion regions of the complex dielectric heterogeneous systems based on semiconductors in the frequency axis and their features are established. The most high-frequency dispersion region corresponds to the separation of free charge carriers at polarization. After this region in the direction of reducing of the frequency, the dispersion regions caused by recharge bulk and/or surface localized states follow. The most low-frequency dispersion region is caused by recharging electron traps in the boundary layer of the dielectric matrix.

Originality/value

Dielectric dispersion models are developed that are associated with: electronic processes of separation of free charge carriers in the semiconductor component, recapture of free charge carriers in the localized electronic states in bulk and on the surface of the semiconductor and also boundary layers of the dielectric at the polarization. The authors have analyzed to situations that correspond applicable and promising materials: varistor ceramics and composite structure with conductive and semiconductor fillers. The modelling results correspond to the existing level of understanding of the electron phenomena in matrix systems and statistical mixtures based on semiconductors. It allows to raise efficiency of research and control properties of heterogeneous materials by dielectric spectroscopy.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 April 2024

Kunal Kumar Singh, Santosh Kumar Mahto and Rashmi Sinha

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric…

Abstract

Purpose

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric properties of solid materials in real time. The sensor uses a transmission line with a bridge-type structure to measure the differential frequency, which can be used to calculate the dielectric constant of the material being tested. The study aims to establish an empirical relationship between the dielectric properties of the material and the frequency measurements obtained from the sensor.

Design/methodology/approach

In the proposed design, the opposite arm of the bridge transmission line is loaded by DC-SRRs, and the distance between DC-SRRs is optimized to minimize the mutual coupling between them. The DC-SRRs are loaded with the material under test (MUT) to perform differential permittivity sensing. When identical MUT is placed on both resonators, a single transmission zero (notch) is obtained, but non-identical MUTs exhibit two split notches. For the design of differential sensors and comparators based on symmetry disruption, frequency splitting is highly useful.

Findings

The proposed structure is demonstrated using electromagnetic simulation, and a prototype of the proposed sensor is fabricated and experimentally validated to prove the differential sensing principle. Here, the sensor is analyzed for sensitivity by using different MUTs with relative permittivity ranges from 1.006 to 10 and with a fixed dimension of 9 mm × 10 mm ×1.2 mm. It shows a very good average frequency deviation per unit change in permittivity of the MUTs, which is around 743 MHz, and it also exhibits a very high average relative sensitivity and quality factor of around 11.5% and 323, respectively.

Originality/value

The proposed sensor can be used for differential characterization of permittivity and also as a comparator to test the purity of solid dielectric samples. This sensor most importantly strengthens robustness to environmental conditions that cause cross-sensitivity or miscalibration. The accuracy of the measurement is enhanced as compared to conventional single- and double-notch metamaterial-based sensors.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 September 2016

Mario A. Rodriguez Barrera and Walter Pereira Carpes Jr

The purpose of this paper is to present the results of a particle swarm optimization (PSO) method applied in the design of a square-loop frequency selective surface (FSS) via the…

Abstract

Purpose

The purpose of this paper is to present the results of a particle swarm optimization (PSO) method applied in the design of a square-loop frequency selective surface (FSS) via the equivalent circuit model (ECM), considering the dielectric effective permittivity as a variable in the optimization problem.

Design/methodology/approach

In the optimization process considered, besides the FSS square loop geometric parameters, the thickness and relative permittivity of dielectric material used as support are included as variables in the search space, using for this a model of dielectric effective permittivity introduced by the authors in a previous work.

Findings

Square loops were designed and the obtained results were compared with designs reported in literature for applications in wireless local area network and long-term evolution 4G systems. The low computational cost is remarkable as well as the acceptable accuracy obtained with the proposed approach. The PSO method results were implemented with the ECM and compared with those obtained via Ansys – high frequency structure simulator commercial software simulations.

Originality/value

The lack of a model of dielectric effective permittivity for the ECM causes a restricted search space in the stochastic FSS design process limited to only geometric parameters, as it is reported in the available literature. The proposed approach simplifies and makes more flexible the design process, and allows guiding the FSS design to unit cell surface and/or dielectric thickness of small dimensions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Hakim Sadou, Tarik Hacib, Hulusi Acikgoz, Yann Le-Bihan, Olivier Meyer and Mohamed Rachid Mekideche

The principle of microwave characterization of dielectric materials using open-ended coaxial line probe is to link the dielectric properties of the sample under test to the…

Abstract

Purpose

The principle of microwave characterization of dielectric materials using open-ended coaxial line probe is to link the dielectric properties of the sample under test to the measurements of the probe admittance (Y(f) = G(f)+ jB(f )). The purpose of this paper is to develop an alternative inversion tool able to predict the evolution of the complex permittivity (ε = ε′ – jε″) on a broad band frequency (f from 1 MHz to 1.8 GHz).

Design/methodology/approach

The inverse problem is solved using adaptive network based fuzzy inference system (ANFIS) which needs the creation of a database for its learning. Unfortunately, train ANFIS using f, G and B as inputs has given unsatisfying results. Therefore, an inputs selection procedure is used to select the three optimal inputs from new inputs, created mathematically from original ones, using the Jang method.

Findings

Inversion results of measurements give, after training, in real time the complex permittivity of solid and liquid samples with a very good accuracy which prove the applicability of ANFIS to solve inverse problems in microwave characterization.

Originality/value

The originality of this paper consists on the use of ANFIS with input selection procedure based on the Jang method to solve the inverse problem where the three optimal inputs are selected from 26 new inputs created mathematically from original ones (f, G and B).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2005

Vadim V. Yakovlev, Ethan K. Murphy and E. Eugene Eves

To outline different versions of a novel method for accurate and efficient determining the dielectric properties of arbitrarily shaped materials.

Abstract

Purpose

To outline different versions of a novel method for accurate and efficient determining the dielectric properties of arbitrarily shaped materials.

Design/methodology/approach

Complex permittivity is found using an artificial neural network procedure designed to control a 3D FDTD computation of S‐parameters and to process their measurements. Network architectures are based on multilayer perceptron and radial basis function nets. The one‐port solution deals with the simulated and measured frequency responses of the reflection coefficient while the two‐port approach exploits the real and imaginary parts of the reflection and transmission coefficients at the frequency of interest.

Findings

High accuracy of permittivity reconstruction is demonstrated by numerical and experimental testing for dielectric samples of different configuration.

Research limitations/implications

Dielectric constant and the loss factor of the studied material should be within the ranges of corresponding parameters associated with the database used for the network training. The computer model must be highly adequate to the employed experimental fixture.

Practical implications

The method is cavity‐independent and applicable to the sample/fixture of arbitrary configuration provided that the geometry is adequately represented in the model. The two‐port version is capable of handling frequency‐dependent media parameters. For materials which can take some predefined form computational cost of the method is very insignificant.

Originality/value

A full‐wave 3D FDTD modeling tool and the controlling neural network procedure involved in the proposed approach allow for much flexibility in practical implementation of the method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 January 2012

Shital Patil and Vijaya Puri

The purpose of this paper is to study properties of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films for application in tuned devices.

Abstract

Purpose

The purpose of this paper is to study properties of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films for application in tuned devices.

Design/methodology/approach

The effect of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films overlay of different thickness on Ag thick film microstrip rectangular patch antenna was investigated in the X band (8‐12 GHz). Using Ag thick film microstrip rectangular patch antenna the thick and mixed thick films was characterized by microwave properties such as resonance frequency, amplitude, bandwidth, quality factor and input impedance. Using the resonance frequency the permittivity of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films was measured.

Findings

Cubic structure of single magnesium oxide and monoclinic structure of bismuth oxide was present in mixed thick film. Also the morphology of single thick films was maintained in mixed thick film of magnesium oxide‐bismuth oxide. Due to overlay magnesium oxide and magnesium oxide‐bismuth oxide mixed thick films, change in resonance frequency shifts towards high frequency end was observed. Dielectric constant of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick film calculated from resonance frequency decreased with increase in thickness.

Originality/value

The microwave properties using Ag thick film microstrip patch antenna due to overlay of magnesium oxide and mixed magnesium oxide‐bismuth oxide thick films have been reported for the first time. Thickness of overlay dependent tuning of the antenna has been achieved.

Article
Publication date: 13 July 2010

T. Hacib, H. Acikgoz, Y. Le Bihan, M.R. Mekideche, O. Meyer and L. Pichon

The dielectric properties of materials (complex permittivity) can be deduced from the admittance measured at the discontinuity plane of a coaxial open‐ended probe. This implies…

Abstract

Purpose

The dielectric properties of materials (complex permittivity) can be deduced from the admittance measured at the discontinuity plane of a coaxial open‐ended probe. This implies the implementation of an inversion procedure. The purpose of this paper is to develop a new non‐iterative inversion methodology in the field of microwave characterization allowing reducing the computation cost comparatively to iterative procedures.

Design/methodology/approach

The inversion methodology combines the support vector machine (SVM) technique and the finite element method (FEM). The SVM are used as inverse models. They show good approximation and generalization capabilities. FEM allows the generation of the data sets required by the SVM parameter adjustment. A data set is constituted of input (complex admittance and frequency) and output (complex permittivity) pairs.

Findings

The results show the applicability of SVM to solve microwave inverse problems instead of using traditional iterative inversion methods which can be very time‐consuming. The experimental results demonstrate the accuracy which can be provided by the SVM technique.

Practical implications

The paper allows extending the capability of microwave characterization cells developed at Laboratoire de Génie Électrique de Paris.

Originality/value

A new inversion method is developed and applied to microwave characterization. This new concept introduces SVM in the context of microwave characterization. SVM results and iterative inversion procedure results are compared in order to evaluate the effectiveness of the developed technique.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 January 2009

M.K. Rendale, S.D. Kulkarni and Vijaya Puri

The aim of this paper is to investigate permittivity of nano structured Ni0.7‐xCoxZn0.3Fe2O4 thick films at microwave frequencies.

Abstract

Purpose

The aim of this paper is to investigate permittivity of nano structured Ni0.7‐xCoxZn0.3Fe2O4 thick films at microwave frequencies.

Design/methodology/approach

Nanosized Ni0.7‐xCoxZn0.3Fe2O4 ferrites with x=0, 0.04, 0.08 and 0.12 were prepared by sucrose precursor technique using the constituent metal nitrates. Thick films of the ferrites were fabricated on alumina substrates by screen‐printing technique. Microwave dielectric constant (ε′) and the loss factor (ε″) for the thick films were measured by VSWR slotted section method in the 8‐18 GHz range of frequencies. Microwave attenuation properties were studied using a waveguide reflectometer set up.

Findings

Both the ε′ and ε″ were found to vary with frequency and composition x. It is observed that, value of ε′ increases with increase in x, due to the increase in bulk density and reduction in porosity of the material, that resulted due to the substitution of cobalt in Ni‐Zn ferrite. The microwave transmission loss offered by the thick films was found to increase with the increase in cobalt concentration x. Within the band width of 4 GHz (from 12‐16 GHz), all the films except that with x=0.04 offered the reflection loss of less than 3 dB.

Originality/value

The dielectric constant of Ni0.7‐xCoxZn0.3Fe2O4 thick films have been reported for the first time. These thick films provide scope for cost effective planar ferrite devices.

Details

Microelectronics International, vol. 26 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 August 2014

Beata Barteczka, Piotr Slobodzian, Arkadiusz Dabrowski and Leszek Golonka

The purpose of this paper was to investigate the influence of non-uniform temperature distribution inside a box furnace during the firing process on electrical properties of the…

Abstract

Purpose

The purpose of this paper was to investigate the influence of non-uniform temperature distribution inside a box furnace during the firing process on electrical properties of the low-temperature co-fired ceramic (LTCC) materials used in radio frequency (RF)/microwave applications.

Design/methodology/approach

The authors studied the change in dielectric constant of two popular LTCC materials (DP 951 and DP 9K7) depending on the position of their samples inside the box furnace. Before firing of the samples, temperature distribution inside the box furnace was determined. The dielectric constant was measured using the method of two microstrip lines.

Findings

The findings showed that non-uniform temperature distribution with spatial difference of 6°C can result in 3-4 per cent change of the dielectric constant. It was also found that dielectric constant of the two tested materials shows disparate behavior under the same temperature distribution inside the box furnace.

Practical implications

The dielectric constant of the substrate materials is crucial for RF/microwave applications. Therefore, it was shown that 3-4 per cent deviation in dielectric constant can result in considerable detuning of microwave circuits and antennas.

Originality/value

To the best of the authors’ knowledge, the quantitative description of the impact of temperature distribution inside a box furnace on electrical properties of the LTCC materials has never been published in the open literature. The findings should be helpful when optimizing production process for high yield of reliable LTCC components like filters, baluns and chip antennas.

Details

Microelectronics International, vol. 31 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 18 June 2019

Laura Jasińska, Karol Malecha, Krzysztof Szostak and Piotr Słobodzian

The low-temperature co-fired ceramics (LTCC) microfluidic-microwave devices fabrication requires careful consideration of two main factors: the accuracy of deposition of…

Abstract

Purpose

The low-temperature co-fired ceramics (LTCC) microfluidic-microwave devices fabrication requires careful consideration of two main factors: the accuracy of deposition of conductive paths and the modification needed to the standard process of the LTCC technology. Neither of them are well-described in the literature.

Design/methodology/approach

The first part of this paper deals with the individual impact of screen parameters such as aperture, photosensitive emulsion thickness and mounting angle on the precision of the screen-printed conductive paths fabrication. For the quantitative analysis purposes, the design of experiment method with Taguchi orthogonal array and analysis of variance was used. The second part contains the characterization of the complex permittivity measured for different values of LTCC substrates lamination pressure.

Findings

It can be concluded, that the combination of aperture, equal to 24 µm, emulsion thickness 20 µm and mounting angle 22.5° ensures the highest quality of printed conductive metallization. Furthermore, the obtained results indicate, that the modification of the lamination pressure does not affect significantly the dielectric parameters of the LTCC substrates.

Originality/value

This paper shows two aspects of the fabrication of the microfluidic-microwave LTCC devices. First, the resolution of the applied metallization is critical in manufacturing high-frequency structures. The obtained experimental results have shown that optimal screen parameters, in terms of conductive pattern quality, can be found. Second, the received outcomes indicate that the changes in the lamination pressure do not affect significantly the electrical parameters of the substrate. Hence, this effect does not need to be taken into account.

Details

Microelectronics International, vol. 36 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 660