Search results

1 – 10 of 839
Article
Publication date: 16 April 2020

Keerthi R, B. Mahanthesh and Smita Saklesh Nagouda

The study of instability due to the effects of Maxwell–Cattaneo law and internal heat source/sink on Casson dielectric fluid horizontal layer is an open question. Therefore, in…

Abstract

Purpose

The study of instability due to the effects of Maxwell–Cattaneo law and internal heat source/sink on Casson dielectric fluid horizontal layer is an open question. Therefore, in this paper, the impact of internal heat generation/absorption on Rayleigh–Bénard convection in a non-Newtonian dielectric fluid with Maxwell–Cattaneo heat flux is investigated. The horizontal layer of the fluid is cooled from the upper boundary, while an isothermal boundary condition is utilized at the lower boundary.

Design/methodology/approach

The Casson fluid model is utilized to characterize the non-Newtonian fluid behavior. The horizontal layer of the fluid is cooled from the upper boundary, while an isothermal boundary condition is utilized at the lower boundary. The governing equations are non-dimensionalized using appropriate dimensionless variables and the subsequent equations are solved for the critical Rayleigh number using the normal mode technique (NMT).

Findings

Results are presented for two different cases namely dielectric Newtonian fluid (DNF) and dielectric non-Newtonian Casson fluid (DNCF). The effects of Cattaneo number, Casson fluid parameter, heat source/sink parameter on critical Rayleigh number and wavenumber are analyzed in detail. It is found that the value Rayleigh number for non-Newtonian fluid is higher than that of Newtonian fluid; also the heat source aspect decreases the magnitude of the Rayleigh number.

Originality/value

The effect of Maxwell–Cattaneo heat flux and internal heat source/sink on Rayleigh-Bénard convection in Casson dielectric fluid is investigated for the first time.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 5 November 2021

Darko Lovrec and Vito Tič

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding…

2900

Abstract

Purpose

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding the electrical properties of the fluid used. The latter is closely related to the purpose, type, structure, and conditions of use of a hydraulic system, especially the powertrain design and fluid condition monitoring. The insulating capacity of the hydraulic fluid is important in cases where the electric motor of the pump is immersed in the fluid. In other cases, on the basis of changing the electrical conductive properties of the hydraulic fluid, we can refer its condition, and, on this basis, the degree of degradation.

Design/methodology/approach

The paper first highlights the importance of knowing the electrical properties of hydraulic fluids and then aims to compare these properties, such as the breakdown voltage of commonly used hydraulic mineral oils and newer ionic fluids suitable for use as hydraulic fluids.

Findings

Knowledge of this property is crucial for the design approach of modern hydraulic compact power packs. In the following, the emphasis is on the more advanced use of known electrical quantities, such as electrical conductivity and the dielectric constant of a liquid.

Originality/value

Based on the changes in these quantities, we have the possibility of real-time monitoring the hydraulic fluid condition, on the basis of which we judge the degree of fluid degradation and its suitability for further use.

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 June 2010

Yulan Sun, Marc Thomas and Jacques Masounave

The purpose of this paper is to present experimental research on the behaviour of a new electrorheological fluid (ETSERF).

1986

Abstract

Purpose

The purpose of this paper is to present experimental research on the behaviour of a new electrorheological fluid (ETSERF).

Design/methodology/approach

The ETSERF is a suspension based on diatomite powders dispersed in silicon oil with a surfactant. A design of experiments is conducted to investigate the effects of electric field strength, particle concentration, surfactant percentage, particle size and shear rate on the efficiency of ETSERFs. The influence of the interactions on shear stresses is analyzed by varying all the combinations of the independent variables. The dielectric properties of the ETSERF are investigated in order to explain the interactions between these independent variables. Furthermore, a quantitative relationship between the dynamic shear stresses and the independent variables is developed.

Findings

The relationship provides a very useful explanation for the contributions of each independent variable to the viscosity and yield stress.

Originality/value

A new empirical model is proposed to explain the rheological behaviour of the ER fluids with a shear‐thinning behaviour.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 December 2020

Suwimon Saneewong Na Ayuttaya

This study aims to present a numerical analysis of the behavior of the electric field and flow field characteristics under electrohydrodynamics (EHD) force. The influence of the…

Abstract

Purpose

This study aims to present a numerical analysis of the behavior of the electric field and flow field characteristics under electrohydrodynamics (EHD) force. The influence of the jet airflow under the EHD force is investigated when it impacts the inclined flat plate.

Design/methodology/approach

The high electrical voltage and angle of an inclined flat plate are tested in a range of 0–30 kV and 0–90°, respectively. In this condition, the air is set in a porous medium and the inlet jet airflow is varied from 0–2 m/s.

Findings

The results of this study show that the electric field line patterns increase with increasing the electrical voltage and it affects the electric force increasing. The angle of inclined flat plate and the boundary of the computational model are influenced by the electric field line patterns and electrical voltage surface. The electric field pattern is the difference in the fluid flow pattern. The fluid flow is more expanded and more concentrated with increasing the angle of an inclined flat plate, the electrical voltage and the inlet jet airflow. The velocity field ratio is increased with increasing the electrical voltage but it is decreased with increasing the angle of the inclined flat plate and the inlet jet airflow.

Originality/value

The maximum Reynolds number, the maximum velocity field and the maximum cell Reynolds number are increased with increasing the electrical voltage, the inlet jet airflow and the angle of the inclined flat plate. In addition, the cell Reynolds number characteristics are more concentrated and more expanded with increasing the electrical voltage. The pattern of numerical results from the cell Reynolds number characteristics is similar to the pattern of the fluid flow characteristics. Finally, a similar trend of the maximum velocity field has appeared for experimental and numerical results so both techniques are in good agreement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 July 2019

Akhil Khajuria, Modassir Akhtar, Manish Kumar Pandey, Mayur Pratap Singh, Ankush Raina, Raman Bedi and Balbir Singh

AA2014 is a copper-based alloy and is typically used for production of complex machined components, given its better machinability. The purpose of this paper was to study the…

Abstract

Purpose

AA2014 is a copper-based alloy and is typically used for production of complex machined components, given its better machinability. The purpose of this paper was to study the effects of variation in weight percentage of ceramic Al2O3 particulates during electrical discharge machining (EDM) of stir cast AA2014 composites. Scanning electron microscopy (SEM) examination was carried out to study characteristics of EDMed surface of Al2O3/AA2014 composites.

Design/methodology/approach

The effect of machining parameters on performance measures during sinker EDM of stir cast Al2O3/AA2014 composites was examined by “one factor at a time” (OFAT) method. The stir cast samples were obtained by using three levels of weight percentage of Al2O3 particulates, i.e. 0 Wt.%, 10 Wt.% and 20 Wt.% with density 1.87 g/cc, 2.35 g/cc and 2.98 g/cc respectively. Machining parameters varied were peak current (1-30 amp), discharge voltage (30-100 V), pulse on time (15-300 µs) and pulse off time (15-450 µs) to study their influence on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR).

Findings

MRR and SR decreased with an increase in weight percentage of ceramic Al2O3 particulates at the expense of TWR. This was attributed to increased microhardness for reinforced stir cast composites. However, microhardness of EDMed samples at fixed values of machining parameters, i.e. 9 amp current, 60 V voltage, 90 µs pulse off time and 90 µs pulse on time reduced by 58.34, 52.25 and 46.85 per cent for stir cast AA2014, 10 Wt.% Al2O3/AA2014 and 20 Wt.% Al2O3/AA2014, respectively. SEM and quantitative energy dispersive spectroscopy (EDS) analysis revealed ceramic Al2O3 particulate thermal spalling in 20 Wt.% Al2O3/AA2014 composite. This was because of increased particulate weight percentage leading to steep temperature gradients in between layers of base material and heat affected zone.

Originality/value

This work was an essential step to assess the machinability for material design of Al2O3 reinforced aluminium metal matrix composites (AMMCs). Experimental investigation on sinker EDM of high weight fraction of particulates in AA2014, i.e. 10 Wt.% Al2O3 and 20 Wt.% Al2O3, has not been reported in archival literature. The AMMCs were EDMed at variable peak currents, voltages, pulse on and pulse off times. The effects of process parameters on MRR, TWR and SR were analysed with comparisons made to show the effect of Al2O3 particulate contents.

Details

World Journal of Engineering, vol. 16 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 June 2019

Hang Xu, Huang Huang, Xiao-Hang Xu and Qiang Sun

This paper aims to study the heat transfer of nanofluid flow driven by the move of channel walls in a microchannel under the effects of the electrical double layer and slippery…

Abstract

Purpose

This paper aims to study the heat transfer of nanofluid flow driven by the move of channel walls in a microchannel under the effects of the electrical double layer and slippery properties of channel walls. The distributions of velocity, temperature and nanoparticle volumetric concentration are analyzed under different slip-length. Also, the variation rates of flow velocity, temperature, concentration of nanoparticle, the pressure constant, the local volumetric entropy generation rate and the total cross-sectional entropy generation are analyzed.

Design/methodology/approach

A recently developed model is chosen which is robust and reasonable from the point of view of physics, as it does not impose nonphysical boundary conditions, for instance, the zero electrical potential in the middle plane of the channel or the artificial pressure constant. The governing equations of flow motion, energy, electrical double layer and stream potential are derived with slip boundary condition presented. The model is non-dimensionalized and solved by using the homotopy analysis method.

Findings

Slip-length has significant influences on the velocity, temperature and nanoparticle volumetric concentration of the nanofluid. It also has strong effects on the pressure constant. With the increase of the slip-length, the pressure constant of the nanofluid in the horizontal microchannel decreases. Both the local volumetric entropy generation rate and total cross-sectional entropy generation rate are significantly affected by both the slip-length of the lower wall and the thermal diffusion. The local volumetric entropy generation rate at the upper wall is always higher than that around the lower wall. Also, the larger the slip-length is, the lower the total cross-sectional entropy generation rate is when the thermal diffusion is moderate.

Originality/value

The findings in this work on the heat transfer and flow phenomena of the nanofluid in microchannel are expected to make a contribution to guide the design of micro-electro-mechanical systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1939

N.A. de Bruyne

WOOD though in many ways an attractive structural material has the disadvantage of being water absorbent. In itself this characteristic would be of minor significance were it not…

Abstract

WOOD though in many ways an attractive structural material has the disadvantage of being water absorbent. In itself this characteristic would be of minor significance were it not for the fact that it is accompanied by considerable swelling at right angles to the axes of the wood fibres. Great interest is being shown at the present time in the possibility of reducing this swelling by the use of synthetic resins. In this article the possibility of preventing swelling by such means is discussed and it is concluded that complete immunity from swelling could only be attained at the expense of the strength of the wood. The article gives an original analysis which enables the magnitude of swelling to be predicted and the expression derived is shown to be in agreement with experiment.

Details

Aircraft Engineering and Aerospace Technology, vol. 11 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1992

Robert Blancquaert, Miloš Somora, M.S. Vijayaraghavan and D.J. Lowrie

ISHM‐Benelux has recently set up a permanent secretariat at the following address:

24

Abstract

ISHM‐Benelux has recently set up a permanent secretariat at the following address:

Details

Microelectronics International, vol. 9 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 2 July 2018

Karol Malecha, Jan Macioszczyk, Piotr Slobodzian and Jacek Sobkow

This paper aims to focus on the application of low temperature co-fired ceramic (LTCC) technology in the fabrication of a microfluidic module with integrated microwave components…

Abstract

Purpose

This paper aims to focus on the application of low temperature co-fired ceramic (LTCC) technology in the fabrication of a microfluidic module with integrated microwave components. The design, technology and performance of such an LTCC-based module is investigated. The rapid heating of liquid samples on a microliter scale is shown to be possible with the use of microwaves.

Design/methodology/approach

The developed microwave-microfluidic module was fabricated using well-known LTCC technology. The finite element method was used to design the geometry of the microwave circuit. Various numerical simulations for different liquids were performed. Finally, the performance of the real LTCC-based microwave-microfluidic module was examined experimentally.

Findings

LTCC materials and technology can be used in the fabrication of microfluidic modules which use microwaves in the heating of the liquid sample. LTCC technology permits the fabrication of matching circuits with appropriate geometry, whereas microwave power can be used to heat up the liquid samples on a microliter scale.

Research limitations/implications

The main limitation of the presented work is found to be in conjunction with LTCC technology. The dimensions and shape of the deposited conductors (e.g. microstrip line, matching circuit) depend on the screen-printing process. A line with resolution lower than 75 µm with well-defined edges is difficult to obtain. This can have an effect on the high-frequency properties of the LTCC modules.

Practical implications

The presented LTCC-based microfluidic module with integrated microwave circuits provides an opportunity for the further development of various micro-total analysis systems or lab-on-chips in which the rapid heating of liquid samples in low volumes is needed (e.g. miniature real-time polymerase chain reaction thermocycler).

Originality/value

Examples of the application of LTCC technology in the fabrication of microwave circuits and microfluidic systems can be found in the available literature. However, the LTCC-based module which combines microwave and microfluidic components has yet to have been reported. The preliminary work on the design, fabrication and properties of the LTCC microfluidic module with integrated microwave components is presented in this paper.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 839