Search results

1 – 10 of 25
Article
Publication date: 10 October 2022

Xiongmin Tang, Tianhong Jiang, Weizheng Chen, ZhiHong Lin, Zexin Zhou, Chen Yongquan and Miao Zhang

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved…

Abstract

Purpose

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved for DBD application fields.

Design/methodology/approach

To address the issue, a set of modes that can generate a high-efficiency pulse excitation voltage in a full-bridge inverter are adopted. With the set of modes, the unique equivalent circuit of DBD loads and the parasitic parameter of the step-up transformer can be fully used. Based on the set of modes, a control strategy for the full-bridge inverter is designed. To test the performance of the power supply, a simulation model is established and an experimental prototype is made with a DBD excimer lamp.

Findings

The simulation and experimental results show that not only a high-efficiency excitation voltage can be generated for the DBD load, but also the soft switching of all power switch is realized. Besides this, with the set of modes and the proposed control strategy, the inverter can operate in a high frequency. Compared with other types of power supplies, the power supply used in the paper can fully take advantage of the potential of the excimer lamp at the same input power.

Originality/value

This work considers that how to use a simple and classical topology to provide a high-efficiency excitation voltage for DBD loads is one of the primary problems to be solved for DBD application fields.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 February 2024

Xiongmin Tang, Zexin Zhou, Yongquan Chen, ZhiHong Lin, Miao Zhang and Xuecong Li

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is…

Abstract

Purpose

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is to design a high-performance power supply with a compact structure for excimer lamps in electronics application.

Design/methodology/approach

To design a high-performance power supply with a compact structure remains a challenge for excimer lamps in electronics application, a current-source type power supply in a single stage with power factor correction (PFC) is proposed. It consists of an excitation voltage generation unit and a PFC unit. By planning the modes of the excitation voltage generation unit, a bipolar pulse excitation voltage with a high rising and falling rate is generated. And a high power factor (PF) on the AC side is achieved by the interaction of a non-controlled rectifier and two inductors.

Findings

The experimental results show that not only a high-frequency and high-voltage bipolar pulse excitation voltage with a high average rising and falling rate (7.51GV/s) is generated, but also a high PF (0.992) and a low total harmonic distortion (5.54%) is obtained. Besides, the soft-switching of all power switches is realized. Compared with the sinusoidal excitation power supply and the current-source power supply, the proposed power supply in this paper can take advantage of the potential of excimer lamps.

Originality/value

A new high-performance power supply with a compact structure for DBD type excimer lamps is proposed. The proposed power supply can work stably in a wide range of frequencies, and the smooth regulation of the discharge power of the excimer lamp can be achieved by changing the switching frequency. The ideal excitation can be generated, and the soft switching can be realized. These features make this power supply a key player in the outstanding performance of the DBD excimer lamps application.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 11 March 2020

Nima Vaziri, Ming-Jyh Chern, Tzyy-Leng Horng and Syamsuri Syamsuri

The purpose of this study is to the modeling of the dielectric barrier discharge (DBD) actuator on the Eppler 387 (E387) airfoil in low Reynolds number conditions.

Abstract

Purpose

The purpose of this study is to the modeling of the dielectric barrier discharge (DBD) actuator on the Eppler 387 (E387) airfoil in low Reynolds number conditions.

Design/methodology/approach

A validated direct-forcing immersed boundary method is used to solve the governing equations. A linear electric field model is used to simulate the DBD actuator. A ray-casting technique is used to define the geometry.

Findings

The purposed model is validated against the former studies. Next, the drag and lift coefficients in the static stall of the E387 airfoil are investigated. Results show that when the DBD actuator is on, both of the coefficients are increased. The effects of the location, applied voltage and applied frequency are also studied and find that the leading-edge actuator with higher voltage and frequency has better improvement in the forces. Finally, the dynamic stall of the E387 with the DBD actuator is considered. The simulation shows that generally when the DBD is on, the lift coefficient in the pitch-up section has lower values and in the pitch-down has higher values than the DBD off mode.

Practical implications

It is demonstrated that using the DBD actuator on E387 in the low Reynolds number condition can increase the lift and drag forces. Therefore, the application of the airfoil must be considered.

Originality/value

The results show that sometimes the DBD actuator has different effects on E387 airfoil in low Reynolds number mode than the general understanding of this tool.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 January 2022

Masoume Amirbande and Abolfazl Vahedi

To design a pulse power water treatment system, it is necessary to design a reactor optimally. One of the most essential types of reactors used in water treatment is the dielectric

Abstract

Purpose

To design a pulse power water treatment system, it is necessary to design a reactor optimally. One of the most essential types of reactors used in water treatment is the dielectric barrier discharge (DBD) reactor. The purpose of this paper is to model the electric field in the two types of planar and coaxial reactors to have an accurate analytical formula for using in the optimal design according to the required electric field of the treatment.

Design/methodology/approach

The method proposed in this paper focuses on the voltage of different areas in the reactor and different boundary conditions to obtain the surface charge density. In this regard, parameters of the dielectric and treated material, as well as the reactor dimension, have been affected in the equations. To confirm the analytical results, the finite element method simulation has been performed, and it shows the accuracy of this method.

Findings

The exact analytical equation of the electric field is found within the discharge zone of the planar and coaxial DBD reactors. These equations can predict the values of different parameters of the reactor required to purify the material before each design and it does not even require simulation.

Originality/value

The electric field formula presented in this paper can allow the manufacturers of pulse power water treatment systems to optimize their design easily, cost-effectively and in less time. Also, the formulas provided are completely general and remain effective for all materials.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 July 2021

Xingquan Wang, Xiuyuan Lu, Wei Chen, Fengpeng Wang, Jun Huang, Lingli Liu, Mengchao Li and Kui Lin

This paper aims to improve the general circuit of driving and protection based on insulated gate bipolar transistor (IGBT) in dielectric barrier discharge power supply by…

Abstract

Purpose

This paper aims to improve the general circuit of driving and protection based on insulated gate bipolar transistor (IGBT) in dielectric barrier discharge power supply by designing a novel half-bridge inverter circuit with discrete components.

Design/methodology/approach

With one SG3524 chip, the structure based on discrete components is used to design the IGBT drive circuit. The driving waveform is isolated and sent out by photo-coupler 6N137. The protection circuit is realized by Hall sensor directly detecting the main circuit current, supplemented by a few components, including diodes, resistors, capacitors and triodes. It improves the reliability of the protection circuit.

Findings

In the driving circuit, the phase difference of signals from two channels are 180°. Moreover, when the duty cycle is set at 40%, it can ensure sufficient pulse width modulation response time. In the protection circuit, when over-current occurs, an intermittent output signal is automatically sent out. Furthermore, the over-current response time can be controlled independently. The peak voltage can be adjusted continuously from 0 to 30 kV with its frequency from 8 to 25 kHz and the power output up to 150 W.

Originality/value

The novel circuit of driving and protection makes not only its structure simpler and easier to be realized but also key parameters, such as frequency, the duty cycle and the driving voltage, continuously adjustable. Moreover, the power supply is suitable for other discharges such as corona discharge and jet discharge.

Details

Circuit World, vol. 48 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 August 2016

Jan Macioszczyk, Karol Malecha and Leszek J. Golonka

The purpose of this paper is a presentation of a miniature vertical dielectric barrier discharge (DBD) plasma generators. The presented devices, with sub- and superstrate, were…

Abstract

Purpose

The purpose of this paper is a presentation of a miniature vertical dielectric barrier discharge (DBD) plasma generators. The presented devices, with sub- and superstrate, were made using low temperature co-fired ceramics (LTCC). Such construction allowed to measure discharge spectra and device temperature easily.

Design/methodology/approach

The generators were made in the Du Pont 951 system with silver vertical metallizations and PdAg contacts. The devices had electrodes with different width and height. Also, the distance between them could be established. They were placed on substrate with buried temperature sensor and covered with a ceramic lid. The lid had opening to measure emitted light. Different configurations of vertical DBD were tested.

Findings

Geometry of vertical metallizations influences on spectra, as well as distance between them. Signal-to-noise ratio had a maximum for certain generators and can be measured by the intensity of highest peak.

Research limitations/implications

Height of vertical metallizations is limited by the difference in shrinkage of LTCC tape and via paste. Parameters of temperature sensors vary between measurements, according to rapid changes of temperature and presence of strong electric field.

Practical implications

The generators can be used for creating discharge for optical emission spectrometry. It is a convenient method to determine the amount of selected gas compounds.

Originality/value

This paper shows fabrication and performance of the novel vertical DBD generators with ceramic additions for convenient spectra measurement and monitoring temperature of the device during work.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 16 August 2021

Burak Karadag, Cem Kolbakir and Ahmet Selim Durna

This paper aims to investigate the effects of a dielectric barrier discharge (DBD) plasma actuator (PA) qualitatively on aerodynamic characteristics of a 3 D-printed NACA 4412…

Abstract

Purpose

This paper aims to investigate the effects of a dielectric barrier discharge (DBD) plasma actuator (PA) qualitatively on aerodynamic characteristics of a 3 D-printed NACA 4412 airfoil model.

Design/methodology/approach

Airflow visualization study was performed at a Reynolds number of 35,000 in a small-scale open-loop wind tunnel. The effect of plasma actuation on flow separation was compared for the DBD PA with four different electrode configurations at 10°, 20° and 30° angles of attack.

Findings

Plasma activation may delay the onset of flow separation up to 6° and decreases the boundary layer thickness. The effects of plasma diminish as the angle of attack increases. Streamwise electrode configuration, in which electric wind is produced in a direction perpendicular to the freestream, is more effective in the reattachment of the airflow compared to the spanwise electrode configuration, in which the electric wind and the free stream are in the same direction.

Practical implications

The Reynolds number is much smaller than that in cruise aircraft conditions; however, the results are promising for low-velocity subsonic airflows such as improving control capabilities of unmanned aerial vehicles.

Originality/value

Superior efficacy of spanwise-generated electric wind over streamwise-generated one is demonstrated at a very low Reynolds number. The results in the plasma aerodynamics literature can be reproduced using ultra-low-cost off-the-shelf components. This is important because high voltage power amplifiers that are frequently encountered in the literature may be prohibitively expensive especially for resource-limited university aerodynamics laboratories.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 December 2018

Abbas Ebrahimi, Majid Hajipour and Kamran Ghamkhar

The purpose of this paper is to control flow separation over a NACA 4415 airfoil by applying unsteady forces to the separated shear layers using dielectric barrier discharge (DBD

Abstract

Purpose

The purpose of this paper is to control flow separation over a NACA 4415 airfoil by applying unsteady forces to the separated shear layers using dielectric barrier discharge (DBD) plasma actuators. This novel flow control method is studied under conditions which the airfoil angle of attack is 18°, and Reynolds number based on chord length is 5.5 × 105.

Design/methodology/approach

Large eddy simulation of the turbulent flow is used to capture vortical structures through the airfoil wake. Power spectral density analysis of the baseline flow indicates dominant natural frequencies associated with “shear layer mode” and “wake mode.” The wake mode frequency is used simultaneously to excite separated shear layers at both the upper surface and the trailing edge of the airfoil (dual-position excitation), and it is also used singly to excite the upper surface shear layer (single-position excitation).

Findings

Based on the results, actuations manipulate the shear layers instabilities and change the wake patterns considerably. It is revealed that in the single-position excitation case, the vortices shed from the upper surface shear layer are more coherent than the dual-position excitation case. The maximum value of lift coefficient and lift-to-drag ratio is achieved, respectively, by single-position excitation as well as dual-position excitation.

Originality/value

The paper contributes to the understanding and progress of DBD plasma actuators for flow control applications. Further, this research could be a beneficial solution for the promising design of advanced low speed flying vehicles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Karol Malecha

This paper aims to present a research on utilization of an irreversible bonding between non-transparent low temperature co-fired ceramics (LTCC) and transparent…

Abstract

Purpose

This paper aims to present a research on utilization of an irreversible bonding between non-transparent low temperature co-fired ceramics (LTCC) and transparent poly(dimethylsiloxane) (PDMS). The research presented in this paper is focused on the technology and performance of the miniature microfluidic module for fluorescence measurement.

Design/methodology/approach

The chemical combination of both materials is achieved through surface modification using argon-oxygen dielectric barrier discharge (DBD) plasma. According to the performed spectroscopic analyses (X-ray photoelectron spectroscopy, XPS; attenuated total reflection-Fourier infrared spectroscopy, ATR-FTIR) and contact angle measurements, the LTCC and PDMS surfaces are oxidized during the process. The presented microfluidic module was fabricated using LTCC technology. The possibility for the fabrication of LTCC-PDMS microfluidic fluorescent sensor is studied. The performance of the sensor was examined experimentally.

Findings

As a result of DBD plasma oxidation, the LTCC and PDMS surfaces change in character from hydrophobic to hydrophilic and were permanently bonded. The presented LTCC-PDMS bonding technique was used to fabricate a microfluidic fluorescent sensor. The preliminary measurements of the sensor have proven that it is possible to observe the fluorescence of a liquid sample from a very small volume.

Research limitations/implications

The presented research is a preliminary work which is focused on the fabrication of the LTCC-PDMS fluorescent sensor. The microfluidic device was positively tested only for ethanolic fluorescein solutions. Therefore, fluorescence measurements should be performed for biological specimen (e.g. DNA).

Practical implications

The LTCC-PDMS bonding technology combines the advantages of both materials. One the one hand, transparent PDMS with precise, transparent three-dimensional structures can be fabricated using hot embossing, soft lithography or laser ablation. On the other hand, rigid LTCC substrate consisting of microfluidic structures, electric interconnections, heaters and optoelectronic components can be fabricated. The development of the LTCC-PDMS microfluidic modules provides opportunity for the construction of a lab-on-chip, or micro-total analysis systems-type system, for analytical chemistry and fast medical diagnoses.

Originality/value

This paper shows utilization of the PDMS-LTCC bonding technology for microfluidics. Moreover, the design, fabrication and performance of the PDMS-LTCC fluorescent sensor are presented.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 August 2011

S. Ghalab, W. M. Raslan, E.M. El-Khatib and A.A. El-Halwagy

Plasma surface treatment of silk has been carried out in atmospheric air under experimental conditions at different discharge powers and plasma exposure times. The treated fabric…

Abstract

Plasma surface treatment of silk has been carried out in atmospheric air under experimental conditions at different discharge powers and plasma exposure times. The treated fabric samples are printed with reactive dye using a conventional silk screen printing technique. After drying, the samples are steam fixed at 102°C for 15 min, washed and air dried. Before and after printing, both treated and untreated samples are subjected to different investigations. The wetting time is found to depend upon the treatment time and discharge power. The colour strength of the treated samples printed with reactive dye is improved to a large extent compared with the untreated samples. An improvement in the fastness properties of the printed samples to washing, rubbing and perspiration is also noticed.

Details

Research Journal of Textile and Apparel, vol. 15 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 25