Search results

1 – 2 of 2
Article
Publication date: 1 June 2021

Yushen Wang, Wei Xiong, Danna Tang, Liang Hao, Zheng Li, Yan Li and Kaka Cheng

Traditional simulation research of geological and similar engineering models, such as landslides or other natural disaster scenarios, usually focuses on the change of stress and…

Abstract

Purpose

Traditional simulation research of geological and similar engineering models, such as landslides or other natural disaster scenarios, usually focuses on the change of stress and the state of the model before and after destruction. However, the transition of the inner change is usually invisible. To optimize and make models more intelligent, this paper aims to propose a perceptible design to detect the internal temperature change transformed by other energy versions like stress or torsion.

Design/methodology/approach

In this paper, micron diamond particles were embedded in 3D printed geopolymers as a potential thermal sensor material to detect the inner heat change. The authors use synthetic micron diamond powder to reinforced the anti-corrosion properties and thermal conductivity of geopolymer and apply this novel geopolymer slurry in the direct ink writing (DIW) technique.

Findings

As a result, the addition of micron diamond powder can greatly influence the rheology of geopolymer slurry and make the geopolymer slurry extrudable and suitable for DIW by reducing the slope of the viscosity of this inorganic colloid. The heat transfer coefficient of the micron diamond (15 Wt.%)/geopolymer was 50% higher than the pure geopolymer, which could be detected by the infrared thermal imager. Besides, the addition of diamond particles also increased the porous rates of geopolymer.

Originality/value

In conclusion, DIW slurry deposition of micron diamond-embedded geopolymer (MDG) composites could be used to manufacture the multi-functional geological model for thermal imaging and defect detection, which need the characteristic of lightweight, isolation, heat transfer and wave absorption.

Article
Publication date: 23 September 2020

Asif Ur Rehman and Vincenzo M. Sglavo

Three-dimensional (3D) printing technology allows geometric complexity and customization with a significant reduction in the structural environmental impact. Nevertheless, it…

Abstract

Purpose

Three-dimensional (3D) printing technology allows geometric complexity and customization with a significant reduction in the structural environmental impact. Nevertheless, it poses a serious threat to the environment when organic binders are used. Binder jet printing of alkali-activated geopolymer precursor can represent a successful and environmental-friendly alternative.

Design/methodology/approach

The present work reports about the successful 3D printing of metakaolin-based alkali-activated concrete, with dimensional integrity and valuable mechanical behavior.

Findings

The geometric behavior was studied as a function of alkali activator flow rate, and the minimum geometric deviation with complete saturation was recorded at 103 mg/s. The printed specimen is characterized by a modulus of rupture as high as 4.4 MPa at 135 mg/s.

Practical implications

The 3D printed geopolymer-based concrete can be potentially used in a wide range of structural applications from construction to thermal insulation elements.

Originality/value

The analysis of the 3D geopolymer-based concrete printing system and material conducted in this paper is original.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Content type

Article (2)
1 – 2 of 2