Search results

1 – 5 of 5
Article
Publication date: 28 January 2020

Datta Bharadwaz Y., Govinda Rao Budda and Bala Krishna Reddy T.

This paper aims to deal with the optimization of engine operational parameters such as load, compression ratio and blend percentage of fuel using a combined approach of particle

92

Abstract

Purpose

This paper aims to deal with the optimization of engine operational parameters such as load, compression ratio and blend percentage of fuel using a combined approach of particle swarm optimization (PSO) with Derringer’s desirability.

Design/methodology/approach

The performance parameters such as brake thermal efficiency (BTHE), brake specific fuel consumption (BSFC), CO, HC, NOx and smoke are considered as objectives with compression ratio, blend percentage and load as input factors. Optimization is carried out by using PSO coupled with the desirability approach.

Findings

From results, the optimum operating conditions are found to be at compression ratio of 18.5 per cent of fuel blend and 11 kg of load. At this input’s parameters of the engine, outputs performance parameters are found to be 34.84 per cent of BTHE, 0.29 kg/kWh of BSFC, 2.86 per cent of CO, 13 ppm of HC, 490 ppm of NOx and 26.25 per cent of smoke.

Originality/value

The present study explores the abilities of both particle swarm algorithm and desirability approach when used together. The combined approach resulted in faster convergence and better prediction capability. The present approach predicted performance characteristics of the variable compression ratio engine with less than 10 per cent error.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 May 2021

Jaber Valizadeh, Peyman Mozafari and Ashkan Hafezalkotob

Waste production and related environmental problems have caused urban services management many problems in collecting, transporting and disposal of waste. The purpose of this…

Abstract

Purpose

Waste production and related environmental problems have caused urban services management many problems in collecting, transporting and disposal of waste. The purpose of this study is to design a new model for municipal waste collection vehicle routing problems with time windows and energy generating from waste. To this purpose, a bi-objective model is presented with the objectives of increasing the income of waste recycles and energy generation from waste and reducing emissions from environmental pollutants.

Design/methodology/approach

A bi-objective model is presented with the objectives of increasing income of recycles trade and energy generation and reducing emissions from environmental pollutants. Concerning the complexity of the model and its inability to solve large-scale problems, non-dominated sorting genetic algorithms and multi-objective particle swarm optimization algorithms are applied.

Findings

In this research, an integrated approach to urban waste collection modeling that coordinates the various activities of waste management in the city of Kermanshah and energy generation from waste are provided. Besides, this study calculates the criteria that show the environmental effects of municipal waste. The proposed model helps to collect municipal wastes in the shortest possible time in addition to reducing the total cost, revenues from the sale of recycled materials and energy production.

Originality/value

The proposed model boosts the current understanding of the waste management and energy generation of waste. The paper adds additional value by unveiling some key future research directions. This guidance may demonstrate possible existing and unexplored gaps so that researchers can direct future research to develop new processes.

Details

Journal of Modelling in Management, vol. 17 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 11 November 2013

Haibo Li, Jun Chen and Yuzhong Xiao

There are process uncertainties and material property variations during laminated steel sheet forming, and those fluctuations may result in non-reliable forming quality issues…

Abstract

Purpose

There are process uncertainties and material property variations during laminated steel sheet forming, and those fluctuations may result in non-reliable forming quality issues such as fracture and delamination. Additionally, the optimization of sheet forming process is a typical multi-objective optimization problem. The target is to find a multi-objective design optimization and improve the process design reliability for laminated sheet metal forming. The paper aims to discuss these issues.

Design/methodology/approach

Desirability function approach is adopted to conduct deterministic multi-objective optimization, and response surface is used as meta-model. Reliability analysis is conducted to evaluate the robustness of the multi-objective design optimization. The proposed method is implemented in a step-bottom square cup drawing process. First, forming process parameters and three noise factors are assumed as probability variables to conduct reliability assessment of the laminated steel sheet forming process using Monte Carlo simulation. Next, only two forming process parameters, blank holding force and frictional coefficient, are considered as probability variables to investigate the influence of the forming parameter deviation on the variance of the response using the first-order second-moment method.

Findings

The results indicate that multi-objective design optimization using desirability function method has high efficiency, and an optimized robust design can be obtained after reliability assessment.

Originality/value

The proposed design procedure has potential as a simple and practical approach in the laminated steel sheet forming process.

Article
Publication date: 12 August 2020

Ngoc Le Chau, Ngoc Thoai Tran and Thanh-Phong Dao

Compliant mechanism has been receiving a great interest in precision engineering. However, analytical methods involving their behavior analysis is still a challenge because there…

Abstract

Purpose

Compliant mechanism has been receiving a great interest in precision engineering. However, analytical methods involving their behavior analysis is still a challenge because there are unclear kinematic behaviors. Especially, design optimization for compliant mechanisms becomes an important task when the problem is more and more complex. Therefore, the purpose of this study is to design a new hybrid computational method. The hybridized method is an integration of statistics, numerical method, computational intelligence and optimization.

Design/methodology/approach

A tensural bistable compliant mechanism is used to clarify the efficiency of the developed method. A pseudo model of the mechanism is designed and simulations are planned to retrieve the data sets. Main contributions of design variables are analyzed by analysis of variance to initialize several new populations. Next, objective functions are transformed into the desirability, which are inputs of the fuzzy inference system (FIS). The FIS modeling is aimed to initialize a single-combined objective function (SCOF). Subsequently, adaptive neuro-fuzzy inference system is developed to modeling a relation of the main geometrical parameters and the SCOF. Finally, the SCOF is maximized by lightning attachment procedure optimization algorithm to yield a global optimality.

Findings

The results prove that the present method is better than a combination of fuzzy logic and Taguchi. The present method is also superior to other algorithms by conducting non-parameter tests. The proposed computational method is a usefully systematic method that can be applied to compliant mechanisms with complex structures and multiple-constrained optimization problems.

Originality/value

The novelty of this work is to make a new approach by combining statistical techniques, numerical method, computational intelligence and metaheuristic algorithm. The feasibility of the method is capable of solving a multi-objective optimization problem for compliant mechanisms with nonlinear complexity.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 April 2020

Rahul Dev Gupta, Pardeep Gupta and Rajesh Khanna

This paper consolidates and presents the results of a work conducted to fabricate micro-channels on titanium grade-2 material by ultrasonic machining process (USM). In this…

Abstract

Purpose

This paper consolidates and presents the results of a work conducted to fabricate micro-channels on titanium grade-2 material by ultrasonic machining process (USM). In this research, the effects of important USM parameters, namely, kind of abrasives and its size, concentration of slurry, USM power rating and feed rate, have been probed on micro-channels quality for average surface roughness and process throughput in the form of material removal rate.

Design/methodology/approach

Multiple micro-channels on commercially pure titanium (i.e. Ti grade-2) have been fabricated in a single pass by employing micro-tool based USM process. Taguchi-based L18 (mixed level) OA has been selected for experimental design. Analysis of variance (ANOVA) study and regression modeling have also been done. Non-Dominated Sorting Genetic Algorithm (NSGA-II) has been used for process optimization to get optimum values of material removal rate (MRR) and surface roughness (SR).

Findings

The influence of important USM variables on SR and MRR have been investigated, and NSGA-II-based multi-response optimization has been done. The best surface roughness values obtained via NSGA-II solution for SiC and B4C are 0.354 µm and 1.303 µm, respectively. Scanned electron microscopic investigation proves the fabrication of micro-channels with smooth surfaces, and minimum burrs and other defects. The material removed from the surface was due to ductile fractures.

Originality/value

Miniaturization is a modern trend these days to solve many precision, scientific and industrial problems. To manufacture precise micro-products, shapes and features, advanced and micro-machining processes can play a very prominent role. Micro-channels are typical micro-features required in micro-fluidic applications like micro heat exchangers and micro-pumps. Exhaustive review of existing research work indicated that precision micromachining of various materials can be effectively performed using USM, though not much work has been undertaken to explore the feasibility of multiple micro-channels in a single run using USM. The current work fulfills the gap, where multiple micro-channels on commercially pure titanium (i.e. Ti grade-2) have been fabricated in a single pass by employing micro-tool-based USM process.

Details

Grey Systems: Theory and Application, vol. 10 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 5 of 5