Search results

1 – 10 of over 28000
Open Access
Article
Publication date: 14 December 2023

Xuanhui Liu, Karl Werder, Alexander Maedche and Lingyun Sun

Numerous design methods are available to facilitate digital innovation processes in user interface design. Nonetheless, little guidance exists on their appropriate selection…

Abstract

Purpose

Numerous design methods are available to facilitate digital innovation processes in user interface design. Nonetheless, little guidance exists on their appropriate selection within the design process based on specific situations. Consequently, design novices with limited design knowledge face challenges when determining suitable methods. Thus, this paper aims to support design novices by guiding the situational selection of design methods.

Design/methodology/approach

Our research approach includes two phases: i) we adopted a taxonomy development method to identify dimensions of design methods by reviewing 292 potential design methods and interviewing 15 experts; ii) we conducted focus groups with 25 design novices and applied fuzzy-set qualitative comparative analysis to describe the relations between the taxonomy's dimensions.

Findings

We developed a novel taxonomy that presents a comprehensive overview of design conditions and their associated design methods in innovation processes. Thus, the taxonomy enables design novices to navigate the complexities of design methods needed to design digital innovation. We also identify configurations of these conditions that support the situational selections of design methods in digital innovation processes of user interface design.

Originality/value

The study’s contribution to the literature lies in the identification of both similarities and differences among design methods, as well as the investigation of sufficient condition configurations within the digital innovation processes of user interface design. The taxonomy helps design novices to navigate the design space by providing an overview of design conditions and the associations between methods and these conditions. By using the developed taxonomy, design novices can narrow down their options when selecting design methods for their specific situations.

Details

International Journal of Innovation Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-2223

Keywords

Abstract

Details

Looking for Information
Type: Book
ISBN: 978-1-80382-424-6

Open Access
Article
Publication date: 29 August 2023

Yangsheng Ye, Degou Cai, Qianli Zhang, Shaowei Wei, Hongye Yan and Lin Geng

This method will become a new development trend in subgrade structure design for high speed railways.

Abstract

Purpose

This method will become a new development trend in subgrade structure design for high speed railways.

Design/methodology/approach

This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China, Japan, France, Germany, the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.

Findings

It is found that in foreign countries, the layered reinforced structure is generally adopted for the subgrade bed of high speed railways, and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed, while the simple structure is adopted in China; in foreign countries, different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice, while in China, compaction coefficient, subsoil coefficient and dynamic deformation modulus are adopted for such evaluation; in foreign countries, the subgrade top deformation control method, the subgrade bottom deformation control method, the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways, while in China, dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design. However, the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.

Originality/value

This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Open Access
Article
Publication date: 1 August 2023

Johannes Schneider and Andreas Strohmayer

The purpose of this study is to develop and describe a process which can be applied to develop new methods in the context of preliminary aircraft sizing in a successful and…

Abstract

Purpose

The purpose of this study is to develop and describe a process which can be applied to develop new methods in the context of preliminary aircraft sizing in a successful and efficient way.

Design/methodology/approach

The tasks to development new aircraft sizing methods are systematically analyzed. In particular, repeating and nonrepeating tasks and common or unique tasks. Then ordered in a sequence and described generically.

Findings

A development process for new aircraft design methods which are necessary for new technologies or configurations is introduced and explained step by step.

Practical implications

Introducing the capability to deal with new technologies or configurations, aircraft design tools or aircraft concepts requires new sizing methods.

Originality/value

The paper presents a systematic approach which can be used to develop a great amount of new sizing methods with a comparable usability and quality standard in an efficient and effective way.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 2024

Insong Kim, Hakson Jin, Kwangsong Ri, Sunbong Hyon and Cholhui Huang

A combustor design is a particularly important and difficult task in the development of gas turbine engines. During studies for accurate and easy combustor design, reasonable…

Abstract

Purpose

A combustor design is a particularly important and difficult task in the development of gas turbine engines. During studies for accurate and easy combustor design, reasonable design methodologies have been established and used in engine development. The purpose of this paper is to review the design methodology for combustor in development of advanced gas turbine engines. The advanced combustor development task can be successfully achieved in less time and at lower cost by adopting new and superior design methodologies.

Design/methodology/approach

The review considers the main technical problems (combustion, cooling, fuel injection and ignition technology) in the development of modern combustor design and deals with combustor design methods by dividing it into preliminary design, performance evaluation, optimization and experiment. The advanced combustion and cooling technologies mainly used in combustor design are mentioned in detail. In accordance with the modern combustor design method, the design mechanisms are considered and the methods used in every stage of the design are reviewed technically.

Findings

The improved performances and strict emission limits of gas turbine engines require the application of advanced technologies when designing combustors. The optimized design mechanism and reasonable performance evaluation methods are very important in reducing experiments and increasing the effectiveness of the design.

Originality/value

This paper provides a comprehensive review of the design methodology for the advanced gas turbine engine combustor.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 7 December 2023

Elena Vazquez

Algorithmic and computational thinking are necessary skills for designers in an increasingly digital world. Parametric design, a method to construct designs based on algorithmic…

Abstract

Purpose

Algorithmic and computational thinking are necessary skills for designers in an increasingly digital world. Parametric design, a method to construct designs based on algorithmic logic and rules, has become widely used in architecture practice and incorporated in the curricula of architecture schools. However, there are few studies proposing strategies for teaching parametric design into architecture students, tackling software literacy while promoting the development of algorithmic thinking.

Design/methodology/approach

A descriptive study and a prescriptive study are conducted. The descriptive study reviews the literature on parametric design education. The prescriptive study is centered on proposing the incomplete recipe as instructional material and a new approach to teaching parametric design.

Findings

The literature on parametric design education has mostly focused on curricular discussions, descriptions of case studies or studio-long approaches; day-to-day instructional methods, however, are rarely discussed. A pedagogical strategy to teach parametric design is introduced: the incomplete recipe. The instructional method proposed provides students with incomplete recipes for parametric scripts that are increasingly pared down as the students become expert users.

Originality/value

The article contributes to the existing literature by proposing the incomplete recipe as a strategy for teaching parametric design. The recipe as a pedagogical tool provides a means for both software skill acquisition and the development of algorithmic thinking.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 31 May 2023

Haizhou Yang, Seong Hyeon Hong, Yu Qian and Yi Wang

This paper aims to present a multi-fidelity surrogate-based optimization (MFSBO) method for computationally accurate and efficient design of microfluidic concentration gradient…

Abstract

Purpose

This paper aims to present a multi-fidelity surrogate-based optimization (MFSBO) method for computationally accurate and efficient design of microfluidic concentration gradient generators (µCGGs).

Design/methodology/approach

Cokriging-based multi-fidelity surrogate model (MFSM) is constructed to combine data with varying fidelities and computational costs to accelerate the optimization process and improve design accuracy. An adaptive sampling approach based on parallel infill of multiple low-fidelity (LF) samples without notably adding computation burden is developed. The proposed optimization framework is compared with a surrogate-based optimization (SBO) method that relies on data from a single source, and a conventional multi-fidelity adaptive sampling and optimization method in terms of the convergence rate and design accuracy.

Findings

The results demonstrate that proposed MFSBO method allows faster convergence and better designs than SBO for all case studies with 49% more reduction in the objective function value on average. It is also found that parallel infill (MFSBO-4) with four LF samples, enables more robust, efficient and accurate designs than conventional multi-fidelity infill (MFSBO-1) that only adopts one LF sample during each iteration for more complex optimization problems.

Originality/value

A MFSM based on cokriging method is constructed to utilize data with varying fidelities, accuracies and computational costs for µCGG design. A parallel infill strategy based on multiple infill criteria is developed to accelerate the convergence and improve the design accuracy of optimization. The proposed methodology is proved to be a feasible method for µCGG design and its computational efficiency is verified.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 November 2021

Jalal Javadi Moghaddam, Davood Momeni and Ghasem Zarei

This research presents a design method for designing greenhouse structures based on topology optimization. Moreover, the structural design of a gothic greenhouse is proposed in…

Abstract

Purpose

This research presents a design method for designing greenhouse structures based on topology optimization. Moreover, the structural design of a gothic greenhouse is proposed in which its structural strength has been improved by using this proposed method. In this method, the design of the structure is done mathematically; therefore, in the design process, more attention can be focused on the constraint space and boundary conditions. It was also shown how the static reliability and fatigue coefficients will change as a result of the design of the greenhouse structure with this method. Another purpose of this study is to find the weakest part of the greenhouse structure against lateral winds and other general loads on the greenhouse structure.

Design/methodology/approach

In the proposed method, the outer surface and the allowable volume as a constraint domain were considered. The desired loads can be located on the constraint domain. The topology optimization was used to minimize the mass and structural compliance as the objective function. The obtained volume was modified for simplifying the construction. The changes in the shape of the greenhouse structure were investigated by choosing three different penalty numbers for the topology optimization algorithm. The final design of the proposed structure was performed based on the total simultaneous critical loads on the structure. The results of the proposed method were compared in the order of different volume fractions. This showed that the volume fraction approach can significantly reduce the weight of the structure while maintaining its strength and stability.

Findings

Topology optimization results showed different strut and chords composition because of the changes in maximum mass limit and volume fraction. The results showed that the fatigue was more hazardous, and it decreased the strength of structure nearly three times more than a static analysis. Further, it was noticed that how the penalty numbers can affect topology optimization results. An optimal design based on topology optimization results was presented to improve the proposed greenhouse design against destruction and demolition. Furthermore, this study shows the most sensitive part of the greenhouse against the standard loads of wind, snow, and crop.

Originality/value

The obtained designs were compared with a conventional arch greenhouse, and then the structural performances were shown based on standard loads. The results showed that in designing the proposed structure, the optimized changes increased the structure strength against the standard loads compared to a simple arch greenhouse. Moreover, the stress safety factor and fatigue safety factor because of different designs of this structure were also compared with each other.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 October 2023

Anna Sigridur Islind, Johan Lundin, Katerina Cerna, Tomas Lindroth, Linda Åkeflo and Gunnar Steineck

Designing digital artifacts is not a linear, straightforward process. This is particularly true when applying a user-centered design approach, or co-design, with users who are…

Abstract

Purpose

Designing digital artifacts is not a linear, straightforward process. This is particularly true when applying a user-centered design approach, or co-design, with users who are unable to participate in the design process. Although the reduced participation of a particular user group may harm the end result, the literature on solving this issue is sparse. In this article, proxy design is outlined as a method for involving a user group as proxy users to speak on behalf of a group that is difficult to reach. The article investigates the following research question: How can roleplaying be embedded in co-design to engage users as proxies on behalf of those who are unable to represent themselves?

Design/methodology/approach

The article presents a design ethnography spanning three years at a cancer rehabilitation clinic, where digital artifacts were designed to be used collaboratively by nurses and patients. The empirical data were analyzed using content analysis and consisted of 20 observation days at the clinic, six proxy design workshops, 21 telephone consultations between patients and nurses, and log data from the digital artifact.

Findings

The article shows that simulated consultations, with nurses roleplaying as proxies for patients ignited and initiated the design process and enabled an efficient in-depth understanding of patients. Moreover, the article reveals how proxy design as a method further expanded the design. The study findings illustrate: (1) proxy design as a method for initiating design, (2) proxy design as an embedded element in co-design and (3) six design guidelines that should be considered when engaging in proxy design.

Originality/value

The main contribution is the conceptualization of proxy design as a method that can ignite and initiate the co-design process when important users are unreachable, vulnerable or unable to represent themselves in the co-design process. More specifically, based on the empirical findings from a design ethnography that involved nurses as proxy users speaking on behalf of patients, the article shows that roleplaying in proxy design is a fitting way of initiating the design process, outlining proxy design as an embedded element of co-design.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

1 – 10 of over 28000