Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 13 March 2024

Lina Gharaibeh, Kristina Eriksson and Björn Lantz

Perceived benefits of building information modelling (BIM) have been discussed for some time, but cost–benefit benchmarking has been inconsistent. The purpose of this paper is to…

Abstract

Purpose

Perceived benefits of building information modelling (BIM) have been discussed for some time, but cost–benefit benchmarking has been inconsistent. The purpose of this paper is to investigate BIM feasibility and evaluate investment worth to elucidate and develop the current understanding of BIM merit. The aim of the study is to propose a research agenda towards a more holistic perspective of BIM use incorporating quantifying investment return.

Design/methodology/approach

An in-depth examination of research patterns has been conducted to identify challenges in the assessment of the investment value and return on investment (ROI) for BIM in the construction industry. A total of 75 research articles were considered for the final literature review. An evaluation of the literature is conducted using a combination of bibliometric analysis and systematic reviews.

Findings

This study, which analysed 75 articles, unveils key findings in quantifying BIM benefits, primarily through ROI calculation. Two major research gaps are identified: the absence of a standardized BIM ROI method and insufficient exploration of intangible benefits. Research focus varies across phases, emphasizing design and construction integration and exploring post-construction phases. The study categorizes quantifiable factors, including productivity, changes and rework reduction, requests for information reduction, schedule efficiency, safety, environmental sustainability and operations and facility management. These findings offer vital insights for researchers and practitioners, enhancing understanding of ’BIM’s financial benefits and signalling areas for further exploration in construction.

Originality/value

The ’study’s outcomes offer the latest insights for researchers and practitioners to create effective approaches for quantifying ’BIM’s financial benefits. Additionally, the proposed research agenda aims to improve the current limited understanding of BIM feasibility and investment worth evaluation. Results of the study could assist practitioners in overcoming limitations associated with BIM investment and economic evaluations in the construction industry.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 November 2022

Nazanin Kordestani Ghalenoei, Mostafa Babaeian Jelodar, Daniel Paes and Monty Sutrisna

The development of prefabrication into full-scale offsite manufacturing processes in the construction industry is paradigm-shifting. Moreover, Building Information Modelling (BIM…

Abstract

Purpose

The development of prefabrication into full-scale offsite manufacturing processes in the construction industry is paradigm-shifting. Moreover, Building Information Modelling (BIM) is becoming the primary mode of communication and integration in construction projects to facilitate the flow of information. Although research has been performed on BIM and Offsite Construction (OSC), integrating these two concepts remains ambiguous and complex and lacks documentation and structure, especially in New Zealand. Therefore, this paper develops a robust framework for OSC and BIM integration. The study focusses on identifying integration challenges and proposes strategies for overcoming these challenges.

Design/methodology/approach

This study applied scientometric analysis, a systematic literature review (SLR) and semi-structured expert interviews to investigate OSC and BIM integration challenges. Multiple themes were investigated and triangulation conducted in this research supports the creation of applicable knowledge in this field.

Findings

Multiple gaps, research trends and the pioneer countries in the paper's scope have been identified through scientometric analysis. Then, a classified cluster of challenges for OSC and BIM implementation and integration strategies of OSC and BIM were demonstrated from the findings. The interviews provided comprehensive and complementary data sets and analyses. The findings from the Systematic Literature Review and interview structured the integration framework.

Originality/value

The contribution of this paper to existing knowledge is a developed framework that serves as a guideline for the OSC stakeholders. This framework can assess OSC's alignment with BIM and consolidate strategies for incorporating OSC into a BIM-based project delivery process. The framework consists of 23 strategies categorised into 8 clusters: a policy document, training and professional development, documentation, technology management, governmental development, contract development, accurate definition and detailing and communication. The proposed strategies will streamline integration by reducing potential challenges, thus enhancing project productivity.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 6 February 2024

Ayodeji Emmanuel Oke, John Aliu, Doyin Helen Agbaje, Andrew Ebekozien, Douglas Omoregie Aghimien, Feyisetan Leo-Olagbaye and Clinton Aigbavboa

The purpose of this study is to identify and evaluate the primary constraints that quantity surveying firms in Nigeria encounter while integrating indoor environmental quality…

Abstract

Purpose

The purpose of this study is to identify and evaluate the primary constraints that quantity surveying firms in Nigeria encounter while integrating indoor environmental quality (IEQ) principles into building designs.

Design/methodology/approach

The study used a quantitative approach by administering a well-structured questionnaire to 114 quantity surveyors. The collected data were analyzed using methods such as frequencies, percentages, mean item scores, Kruskal–Wallis test and exploratory factor analysis.

Findings

The top five ranked constraints were limited access to funding or financing options, limited availability of green materials, limited availability of insurance for sustainable buildings, limited availability of sustainable design resources and limited diversity and inclusivity within the design profession. Based on the factor analysis, the study identified six clusters of constraints: structural-related constraints, technical-related constraints, financial-related constraints, capacity-related constraints, legal-related constraints and culture-related constraints.

Practical implications

This study has several practical implications for quantity surveying firms, policymakers and industry stakeholders involved in building design and construction in Nigeria. The findings of this study can also inform future research on the integration of IEQ principles into building designs.

Originality/value

By identifying and structuring the clusters of constraints faced by quantity surveying firms in Nigeria when implementing IEQ principles, this study provides a novel approach to understanding the challenges associated with IEQ implementation in the building sector. This understanding can guide policymakers, industry stakeholders and quantity surveying firms in developing effective strategies to overcome these constraints and promote IEQ principles in building design and construction.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 6 June 2023

Oluwaseun Akindele, Saheed Ajayi, Adekunle S. Oyegoke, Hafiz A. Alaka and Temitope Omotayo

Notwithstanding the Geographical Information System (GIS) being a fast-emerging green area of a digital revolution, the available studies focus on different subject areas of…

Abstract

Purpose

Notwithstanding the Geographical Information System (GIS) being a fast-emerging green area of a digital revolution, the available studies focus on different subject areas of application in the construction industry, with no study that clarifies its knowledge strands. Hence, this systematic review analyses GIS core area of application, its system integration patterns, challenges and future directions in the construction industry.

Design/methodology/approach

A systematic review approach was employed, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. A total of 60 articles published between 2011 and 2022 were identified, thoroughly reviewed and analysed using thematic analysis.

Findings

The analysis revealed spatial planning and design, construction-task tracking, defect detection and safety monitoring as its four main application-based areas. The findings showed that the adoption of GIS technology is rapidly expanding and being utilised more in building projects to visual-track construction activities. The review discovered an integrated pattern involving data flow from a device and window-form application to GIS, the pathways to data exchange between platforms to platforms, where ArcGIS is the most used software. Furthermore, the study highlighted the lack of interoperability between heterogeneous systems as the crux impediment to adopting GIS in the built environment.

Originality/value

The research provides a deep insight into possible areas where GIS is adopted in the construction industry, identifying areas of extensive and limited application coverage over a decade. Besides, it demystifies possible pathways for future integration opportunities of GIS with other emerging technologies within the construction industry.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 3 November 2023

Qiuwen Ma, Sai On Cheung and Shan Li

Integrated project delivery (IPD) project that does not use multiparty agreement is identified as IPD-ish. The use of IPD-ish arrangement by incorporating integration practices in…

Abstract

Purpose

Integrated project delivery (IPD) project that does not use multiparty agreement is identified as IPD-ish. The use of IPD-ish arrangement by incorporating integration practices in conventional contract can be viewed as the part of the adoption process of IPD. Moreover, inappropriate integration practices invite new forms of risks and the absence of multiparty agreement adds to the challenges of risk management in IPD-ish projects. This study discusses such challenges and proposes the use of joint risk management to address the potential pitfalls in IPD-ish arrangement.

Design/methodology/approach

A mixed research method was applied. First, the criticality of IPD-ish general and integration-specific risks was examined through a survey. Second, a real IPD-ish project was used to exemplify the use of joint risk management (JRM) to manage IPD-ish risks.

Findings

Two types of risks, namely integration risks (IRs) and general risks (GRs), are identified in IPD-ish projects. Two major findings for the IRs: (1) the most critical IRs are related to unbalanced incentivization and inefficient multidisciplinary teams; and (2) only team formation related pre-contract JRM strategies affect IRs. As for the GRs, the most critical ones are associated with design issues and can be effectively mitigated by post-contract JRM.

Originality/value

Using IPD-ish arrangement is an inevitable part of implementation of full IPD. This happens as many change-averse owners would like to test the integration principles using a conventional contract that they are familiar with. In fact, success in IPD-ish would pave the path for further adoption of IPD. This study offers insight into categorization of risks in IPD-ish projects. Appropriate use of post-contract and organization related pre-contract JRM would improve the chance of teasing out the values of IPD through IPD-ish arrangements. Care should be taken to introduce some contracting integration initiatives, such as risk/reward sharing incentive.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 February 2023

Vidya Umakant Khanapure and Sameer S. Shastri

The importance of lean and sustainability integration in sustainable construction (SC) has been extensively studied. However, a practical and thorough implementation methodology…

Abstract

Purpose

The importance of lean and sustainability integration in sustainable construction (SC) has been extensively studied. However, a practical and thorough implementation methodology addressing the project life cycle phases is still inadequate. The present study has developed a novel phase-wise sustainable–lean implementation methodology for high-rise residential projects.

Design/methodology/approach

The current study has identified the 50 direct conceptual interactions between 11 lean principles and 11 sustainability criteria encompassing 44 different attributes covering 174 sustainability actions. A panel of nine experts validated these interactions, and 50 integration vectors were proposed addressing different phases of the project life cycle of high-rise residential buildings. The experts also analysed the identified integration vectors for their current and likely future implementation in high-rise residential projects.

Findings

The interactions between lean and sustainability principles led to the development of a phase-wise implementation methodology. The experts' survey responses on the current level of implementation revealed that 40, 32 and 28% of integration vectors were implemented rarely, sometimes, and frequently, respectively. For likely future implementation, 28 and 72% integration vectors were reported as very likely and extremely likely to implement, respectively. This survey response highlighted the usefulness of identified integration vectors for enhancing the sustainability of high-rise residential projects.

Originality/value

The proposed sustainable–lean implementation methodology acts as a comprehensive guideline for implementing a lean approach to achieve the objectives of SC in high-rise residential projects. This may facilitate the transition from conventional to sustainable building practices using a lean approach.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 4 March 2024

Hemanth Kumar N. and S.P. Sreenivas Padala

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based…

Abstract

Purpose

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based multiobjective optimization (MOO) model integrating the nondominated sorting genetic algorithm III (NSGA-III) to enhance sustainability. The goal is to reduce embodied energy and cost in the design process.

Design/methodology/approach

Through a case study research method, this study uses BIM, NSGA-III and real-world data in five phases: literature review, identification of factors, BIM model development, MOO model creation and validation in the architecture, engineering and construction sectors.

Findings

The innovative BIM-based MOO model optimizes embodied energy and cost to achieve sustainable construction. A commercial building case study validation showed a reduction of 30% in embodied energy and 21% in cost. This study validates the model’s effectiveness in integrating sustainability goals, enhancing decision-making, collaboration, efficiency and providing superior assessment.

Practical implications

This model delivers a unified approach to sustainable design, cutting carbon footprint and strengthening the industry’s ability to attain sustainable solutions. It holds potential for broader application and future integration of social and economic factors.

Originality/value

The research presents a novel BIM-based MOO model, uniquely focusing on sustainable construction with embodied energy and cost considerations. This holistic and innovative framework extends existing methodologies applicable to various buildings and paves the way for additional research in this area.

Article
Publication date: 6 February 2024

S. P. Sreenivas Padala and Prabhanjan M. Skanda

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early…

Abstract

Purpose

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early design stages. The objective is to optimize volumetric spaces (3D) instead of 2D spaces to enhance space utilization, thermal comfort, constructability and rental value of buildings

Design/methodology/approach

The integration of two fundamental concepts – BIM and MOO, forms the basis of proposed framework. In the early design phases of a project, BIM is used to generate precise building volume data. The non-sorting genetic algorithm-II, a MOO algorithm, is then used to optimize extracted volume data from 3D BIM models, considering four objectives: space utilization, thermal comfort, rental value and construction cost. The framework is implemented in context of a school of architecture building project.

Findings

The findings of case study demonstrate significant improvements resulting from MOO of building volumes. Space utilization increased by 30%, while thermal comfort improved by 20%, and construction costs were reduced by 10%. Furthermore, rental value of the case study building increased by 33%.

Practical implications

The proposed framework offers practical implications by enabling project teams to generate optimal building floor layouts during early design stages, thereby avoiding late costly changes during construction phase of project.

Originality/value

The integration of BIM and MOO in this study provides a unique approach to optimize building volumes considering multiple factors during early design stages of a project

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 July 2023

Bowen Zheng, Mudasir Hussain, Yang Yang, Albert P.C. Chan and Hung-Lin Chi

In the last decades, various building information modeling–life cycle assessment (BIM-LCA) integration approaches have been developed to assess the environmental impact of the…

Abstract

Purpose

In the last decades, various building information modeling–life cycle assessment (BIM-LCA) integration approaches have been developed to assess the environmental impact of the built asset. However, there is a lack of consensus on the optimal BIM-LCA integration approach that provides the most accurate and efficient assessment outcomes. To compare and determine their accuracy and efficiency, this study aimed to investigate four typical BIM-LCA integration solutions, namely, conventional, parametric modeling, plug-in and industry foundation classes (IFC)-based integration.

Design/methodology/approach

The four integration approaches were developed and applied using the same building project. A quantitative technique for evaluating the accuracy and efficiency of BIM-LCA integration solutions was used. Four indicators for assessing the performance of BIM-LCA integration were (1) validity of LCA results, (2) accuracy of bill-of-quantity (BOQ) extraction, (3) time for developing life cycle inventories (i.e. developing time) and (4) time for calculating LCA results (i.e. calculation time).

Findings

The results show that the plug-in-based approach outperforms others in developing and calculation time, while the conventional one could derive the most accuracy in BOQ extraction and result validity. The parametric modeling approach outperforms the IFC-based method regarding BOQ extraction, developing time and calculation time. Despite this, the IFC-based approach produces LCA outcomes with approximately 1% error, proving its validity.

Originality/value

This paper forms one of the first studies that employ a quantitative and objective method to determine the performance of four typical BIM-LCA integration solutions and reveal the trade-offs between the accuracy and efficiency of the integration approaches. The findings provide practical references for LCA practitioners to select appropriate BIM-LCA integration approaches for evaluating the environmental impact of the built asset during the design phase.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 June 2023

Abdelrahman M. Farouk and Rahimi A. Rahman

Implementing building information modeling (BIM) in construction projects offers many benefits. However, the use of BIM in project cost management is still limited. This study…

Abstract

Purpose

Implementing building information modeling (BIM) in construction projects offers many benefits. However, the use of BIM in project cost management is still limited. This study aims to review the current trends in the application of BIM in project cost management.

Design/methodology/approach

This study systematically reviews the literature on the application of BIM in project cost management. A total of 46 related articles were identified and analyzed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses method.

Findings

Eighteen approaches to applying BIM in project cost management were identified. The approaches can be grouped into cost control and cost estimation. Also, BIM can be applied independently or integrated with other techniques. The integrated approaches for cost control include integration with genetic algorithms, Monte Carlo simulation, lean construction, integrated project delivery, neural network and value engineering. On the contrary, integrated approaches for cost estimation include integration with cost-plus pricing, discrepancy analysis, construction progress curves, estimation standards, algorithms, declarative mappings, life cycle sustainability assessment, ontology, Web-based frameworks and structured query language.

Originality/value

To the best of the authors’ knowledge, this study is the first to systematically review prior literature on the application of BIM in project cost management. As a result, the study provides a comprehensive understanding of the current state of the art and fills the literature gap. Researchers and industry professionals can use the study findings to increase the benefits of implementing BIM in construction projects.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of over 2000