Search results

1 – 10 of 21
Article
Publication date: 8 February 2016

Xingxin Liang, Zhenglin Liu, Huanjie Wang, Xuhui Zhou and Xincong Zhou

The purpose of this study is to investigate the effects of partial texture location and dimple depth on load carrying capacity (LCC), friction coefficient and circumferential flow…

Abstract

Purpose

The purpose of this study is to investigate the effects of partial texture location and dimple depth on load carrying capacity (LCC), friction coefficient and circumferential flow of journal bearing.

Design/methodology/approach

Based on the Navier-Stokes equation, the methodology used computational fluid dynamics (CFD). A phase change boundary condition was applied on fluid domain, and the negative pressure at divergent region of oil film was considered.

Findings

It has been found that texture located at lubricant inlet area can improve the performance of the bearing, and the effect of shallow dimples is superior to the deep ones. However, the bearing performance will be reduced due to the texture located at the maximum pressure area. When texture is located at the lubricant outlet area, there will be two different situations: the part of the texture located within the oil film divergent area can improve the LCC, while the part that is beyond the divergent region will make the LCC decrease.

Originality/value

The lower-half oil film model was established only in this study to analyze the hydrodynamic lubrication performance of partial textured journal bearing, and the lower-half oil film was divided into three parts. A new cavitation algorithm was introduced to deal with the negative pressure. The formula for calculating the friction of liquid film is refined, including the consideration of vapor phase. The simulation results show that the location of partial texture have a great influence on the bearing performance.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 14 September 2015

Xia He, Lin Zhong, Guorong Wang, Yang Liao and Qingyou Liu

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the…

2495

Abstract

Purpose

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the lifetime and working performance of rock bit sliding bearing under high temperature and heavy load conditions.

Design/methodology/approach

Surface textures on beryllium bronze specimen were fabricated by femtosecond laser ablation (800 nm wavelength, 40 fs pulse duration, 1 kHz pulse repetition frequency), and then the tribological behaviors of pin-on-disc configuration of rock bit bearing were performed with 20CrNiMo/beryllium bronze tribo-pairs under non-Newtonian lubrication of rock bit grease.

Findings

The results showed that the surface texture on beryllium bronze specimens with specific geometrical features can be achieved by optimizing femtosecond laser processing via adjusting laser peak power and exposure time; more than 52 per cent of friction reduction was obtained from surface texture with a depth-to-diameter ratio of 0.165 and area ratio of 5 per cent at a shear rate of 1301 s−1 under the heavy load of 20 MPa and high temperature of 120°C, and the lubrication regime of rock bit bearing unit tribo-pairs was improved from boundary to mixed lubrication, which indicated that femtosecond laser ablation technique showed great potential in promoting service life and working performance of rock bit bearing.

Originality/value

Femtosecond laser-irradiated surface texture has the potential possibility for application in rock bit sliding bearing to improve the lubrication performance. Because proper micro dimples showed good lubrication and wear resistance performance for unit tribo-pairs of rock bit sliding bearing under high temperature, heavy load and non-Newtonian lubrication conditions, which is very important to improve the efficiency of breaking rock and accelerate the development of deep-water oil and gas resources.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Jian Zhan and Mingjiang Yang

The purpose of this study was to develop a new approach using a pulse YAG laser with rational power density and pulse width to texture desired discrete distribution morphology on…

Abstract

Purpose

The purpose of this study was to develop a new approach using a pulse YAG laser with rational power density and pulse width to texture desired discrete distribution morphology on the cylinder wall.

Design/methodology/approach

Variational rules of the effects of these three parameters were found by calculating the oil film on the cylinder/piston ring system. The experiment results were compared between laser texturing cylinders and conventional honing cylinders.

Findings

It was found that the coefficient of friction and wear rate of laser texturing cylinders were reduced by 50 and 85.7 per cent, respectively, and the piston ring wear rate was decreased by 50 per cent under full lubrication condition. Under starved lubrication condition, the cylinder liner wear was reduced by 34.3 per cent.

Originality/value

The effectiveness of which was determined by three control parameters: depth-to-diameter ratio, area density and distribution angle of the dimples.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 February 2019

Mohammad Fazli and Mehrdad Raisee

This paper aims to predict turbulent flow and heat transfer through different channels with periodic dimple/protrusion walls. More specifically, the performance of various low-Re k

Abstract

Purpose

This paper aims to predict turbulent flow and heat transfer through different channels with periodic dimple/protrusion walls. More specifically, the performance of various low-Re k-ε turbulence models in prediction of local heat transfer coefficient is evaluated.

Design/methodology/approach

Three low-Re number k-ε turbulence models (the zonal k-ε, the linear k-ε and the nonlinear k-ε) are used. Computations are performed for three geometries, namely, a channel with a single dimpled wall, a channel with double dimpled walls and a channel with a single dimple/protrusion wall. The predictions are obtained using an in house finite volume code.

Findings

The numerical predictions indicate that the nonlinear k-ε model predicts a larger recirculation bubble inside the dimple with stronger impingement and upwash flow than the zonal and linear k-ε models. The heat transfer results show that the zonal k-ε model returns weak thermal predictions in all test cases in comparison to other turbulence models. Use of the linear k-ε model leads to improvement in heat transfer predictions inside the dimples and their back rim. However, the most accurate thermal predictions are obtained via the nonlinear k-ε model. As expected, the replacement of the algebraic length-scale correction term with the differential version improves the heat transfer predictions of both linear and nonlinear k-ε models.

Originality/value

The most reliable turbulence model of the current study (i.e. nonlinear k-ε model) may be used for design and optimization of various thermal systems using dimples for heat transfer enhancement (e.g. heat exchangers and internal cooling system of gas turbine blades).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 July 2021

Song Quan, Yong Guo, Xuedong Liu, Zhewu Chen and Yudi Liu

This paper aims to study the lubrication and sealing performance on the textured piston pair under the cross action of the shape and structure parameters. This paper further…

Abstract

Purpose

This paper aims to study the lubrication and sealing performance on the textured piston pair under the cross action of the shape and structure parameters. This paper further carries out the optimization design of low energy consumption hydraulic impact piston pair.

Design/methodology/approach

Based on the characteristics of the ring gap seal piston pair, the flow field analysis model of the whole film gap is established for its periodic treatment. The friction power loss of the piston pair is defined as the evaluation index of the lubrication performance and the leakage power loss as the evaluation index of the sealing performance. The orthogonal test design and CFD software were used to analyze the lubrication and sealing performance of the textured piston pair.

Findings

The cross action of shape and structure factors has a great influence of the lubrication and sealing performance on the textured piston pair. Clearance and shape parameters have great influence on it, while seal length and depth diameter ratio have little influence. The sealing performance of conical textured piston pair is good, while the lubrication performance of square textured piston pair is good. The primary and secondary order of influence of shape and structure on energy consumption on piston pair is B (seal clearance) > C (texture shape) > D (area ratio) > A (seal length) > E (depth diameter ratio).

Originality/value

Breaking the defect of local optimization design on traditional piston pair structure, then find the matching relationship of structural parameters on textured piston pair. Further improve the lubrication and sealing performance of the piston pair, and provide reference for the global optimization design of the low energy consumption hydraulic impact piston pair.

Details

Industrial Lubrication and Tribology, vol. 74 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 October 2018

Lei Luo, Wei Du, Songtao Wang, Weilong Wu and Xinghong Zhang

The purpose of this paper is to investigate the optimal geometry parameters in a dimple/protrusion-pin finned channel with high thermal performance.

552

Abstract

Purpose

The purpose of this paper is to investigate the optimal geometry parameters in a dimple/protrusion-pin finned channel with high thermal performance.

Design/methodology/approach

The BSL turbulence model is used to calculate the flow structure and heat transfer in a dimple/protrusion-pin finned channel. The optimization algorithm is set as Non-dominated Sorting Genetic Algorithm II (NSGA-II). The high Nusselt number and low friction factor are chosen as the optimization objectives. The pin fin diameter, dimple/protrusion diameter, dimple/protrusion location and dimple/protrusion depth are applied as the optimization variables. An in-house code is used to generate the geometry model and mesh. The commercial software Isight is used to perform the optimization process.

Findings

The results show that the Nusselt number and friction factor are sensitive to the geometry parameters. In a pin finned channel with a dimple, the Nusselt number is high at the rear part of the dimple, while it is low at the upstream of the dimple. A high dissipative function is found near the pin fin. In the protrusion channel, the Nusselt number is high at the leading edge of the protrusion. In addition, the protrusion induces a high pressure drop compared to the dimpled channel.

Originality/value

The originality of this paper is to optimize the geometry parameters in a pin finned channel with dimple/protrusion. This is good application for the heat transfer enhancement at the trailing side for the gas turbine.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1985

CJ Langdon

DIFFICULT to machine, high temperature materials have been introduced at an ever increasing rate into aircraft propulsion systems over the last twenty five years. Over the same…

Abstract

DIFFICULT to machine, high temperature materials have been introduced at an ever increasing rate into aircraft propulsion systems over the last twenty five years. Over the same period, the aircraft industry has had an ‘on‐off’ affair with electrochemical machining (ECM).

Details

Aircraft Engineering and Aerospace Technology, vol. 57 no. 6
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 1 October 2005

162

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 9 April 2019

Haniff Abdul Rahman, Jaharah A. Ghani, Wan Mohd Faizal Wan Mahmood and Mohammad Rasidi Mohammad Rasani

This study aims to simulate the influence of surface texturing produced via turning process toward pressure distribution and load capacity generation using computational fluid…

Abstract

Purpose

This study aims to simulate the influence of surface texturing produced via turning process toward pressure distribution and load capacity generation using computational fluid dynamics (CFD).

Design/methodology/approach

The dimple geometry was obtained via turning process, to be used for future application on piston skirt surfaces. Two cases were studied: a preliminary study using single periodic dimple assuming linear dimple distribution and an application study using multiple periodic dimples to address actual dimple orientation following the turning process.

Findings

For the first case, the dimple was proven to generate load capacity with regard to untextured surface, owing to the asymmetric pressure distribution. Increasing the Reynolds number, dimple width and dimple depth was found to increase load capacity. For the second case, although load capacity increases via surface texturing, the value was 97.4 per cent lower relative to the first case. This confirmed the importance of doing multiple dimple simulations for real applications to achieve more realistic and accurate results.

Originality/value

A new concept of dimple fabrication using a low-cost turning process has been developed, with a potential to increase the tribological performance under hydrodynamic lubrication. Previous CFD simulations to simulate these benefits have been done using a single periodic dimple, assuming equal distribution array between dimples. However, due to the different orientations present for dimples produced using turning process, a single periodic dimple simulation may not be accurate, and instead, multiple dimple simulation is required. Therefore, present research was conducted to compare the results between these two cases and to ensure the accuracy of CFD simulation for this type of dimple.

Details

Industrial Lubrication and Tribology, vol. 71 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 1962

J.L. Livesey, J.D. Jackson and C.J. Southern

Experiments have been carried out to determine the magnitude of static hole errors for holes of various diameters and depths. A new approach is tried to the problem of…

Abstract

Experiments have been carried out to determine the magnitude of static hole errors for holes of various diameters and depths. A new approach is tried to the problem of extrapolation to zero hole size for the purpose of obtaining a true value of static pressure. The results obtained are in broad agreement with previous experimental data and confirm the fact that a positive error is obtained for deep static holes, whereas shallow holes with large cavities behind them can involve negative errors. Since the effects of hole size and hole depth are apparently opposite, the use of fairly shallow holes can result in pressure measurements which are very close to the true value, provided that in drilling the holes no distortion of the duct wall is produced and all burrs are carefully removed. This point may be of interest in some engineering applications where the material used in the construction of the duct or model is thin.

Details

Aircraft Engineering and Aerospace Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0002-2667

1 – 10 of 21