Search results

1 – 10 of over 7000
Article
Publication date: 17 May 2021

Xian Zhang, Gedong Jiang, Hao Zhang, Xialun Yun and Xuesong Mei

The purpose of this paper is to analyze the dependent competing failure reliability of harmonic drive (HD) with strength failure and degradation failure.

Abstract

Purpose

The purpose of this paper is to analyze the dependent competing failure reliability of harmonic drive (HD) with strength failure and degradation failure.

Design/methodology/approach

Based on life tests and stiffness degradation experiments, Wiener process is used to establish the accelerated performance degradation model of HD. Model parameter distribution is estimated by Bayesian inference and Markov Chain Monte Carlo (MCMC) and stiffness degradation failure samples are obtained by a three-step sampling method. Combined with strength failure samples of HD, copula function is used to describe the dependence between strength failure and stiffness degradation failure.

Findings

Strength failure occurred earlier than degradation failure under high level accelerated condition; degradation failure occurred earlier than strength failure under medium- or low-level accelerated condition. Gumbel copula is the optimum copula function for dependence modeling of strength failure and stiffness degradation failure. Dependent competing failure reliability of HD is larger than independent competing failure reliability.

Originality/value

The reliability evaluation method of dependent competing failure of HD with strength failure and degradation failure is first proposed. Performance degradation experiments during accelerated life test (ALT), step-down ALT and life test under rated condition are conducted for Wiener process based step-down accelerated performance degradation modeling.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 February 2019

Preeti Wanti Srivastava and Tanu Gupta

Accelerated life tests (ALTs) are used to make timely assessments of the lifetime distribution of highly reliable materials and components. Life test under accelerated…

Abstract

Purpose

Accelerated life tests (ALTs) are used to make timely assessments of the lifetime distribution of highly reliable materials and components. Life test under accelerated environmental conditions may be fully accelerated or partially accelerated. In fully accelerated life testing, all the test units are run at accelerated condition, while in partially accelerated life testing, they are both run at normal and accelerated conditions. The products can fail due to one of the several possible causes of failure which need not be independent. The purpose of this paper is to design constant-stress PALT with dependent competing causes of failure using the tampered failure rate model.

Design/methodology/approach

Gumbel–Hougaard copula is used to model and measure the dependence between the life times of competing causes of failure. The use of the copula simplifies the model specification and gives a general class of distributions with the same dependent structure and arbitrary marginal distributions.

Findings

The optimal plan consists in finding optimum allocation of test units in different chambers by minimizing the reciprocal of the determinant of Fisher Information Matrix. The confidence interval for the estimated values of the design parameters has been obtained and sensitivity analysis carried out. The results of sensitivity analysis show that the plan is robust to small deviations from the true values of baseline parameters.

Originality/value

The model formulated can help reliability engineers obtain reliability estimates quickly of high reliability products that are likely to last for several years.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 25 February 2019

Somayeh Mireh, Ahmad Khodadadi and Firoozeh Haghighi

The purpose of this paper is the reliability analysis for systems with dependent gamma degradation process and Weibull failure time.

Abstract

Purpose

The purpose of this paper is the reliability analysis for systems with dependent gamma degradation process and Weibull failure time.

Design/methodology/approach

Consider a life testing experiment in which a sample of n devices starts to operate at t=0 and the data are available on failure time and failure-evolving process on each individual, called in some contents wear or degradation. Ignoring the between performance characteristics dependency structure may lead us to different reliability estimations, while the dependency justly exists. In previous research, dependency between the degradation process and hard failure time has been studied in limited detail (special closed form expression). Thereafter, the dependency between two degradation processes with the same structure (gamma process) in a system is considered using the copula function.

Findings

The results indicate that ignoring the dependency structure may lead us to different reliability estimations while the dependency justly exists.

Originality/value

This study gives some contributions that evaluate reliability metrics with more than one failure mechanism that may not be independent and possibly follow a different distribution function. The authors have used the copula function as a basis to develop a proposal model and analysis methods. In addition, the authors discussed the identifiability of the copula. Finally, simulation data were used to review the suggested approach.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 March 2021

Mohammad Reza Pourhassan, Sadigh Raissi and Arash Apornak

In some environments, the failure rate of a system depends not only on time but also on the system condition, such as vibrational level, efficiency and the number of random…

Abstract

Purpose

In some environments, the failure rate of a system depends not only on time but also on the system condition, such as vibrational level, efficiency and the number of random shocks, each of which causes failure. In this situation, systems can keep working, though they fail gradually. So, the purpose of this paper is modeling multi-state system reliability analysis in capacitor bank under fatal and nonfatal shocks by a simulation approach.

Design/methodology/approach

In some situations, there may be several levels of failure where the system performance diminishes gradually. However, if the level of failure is beyond a certain threshold, the system may stop working. Transition from one faulty stage to the next can lead the system to more rapid degradation. Thus, in failure analysis, the authors need to consider the transition rate from these stages in order to model the failure process.

Findings

This study aims to perform multi-state system reliability analysis in energy storage facilities of SAIPA Corporation. This is performed to extract a predictive model for failure behavior as well as to analyze the effect of shocks on deterioration. The results indicate that the reliability of the system improved by 6%.

Originality/value

The results of this study can provide more confidence for critical system designers who are engaged on the proper system performance beyond economic design.

Details

International Journal of Quality & Reliability Management, vol. 38 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 June 1997

Rudi H.P.M. Arts, Anuj Saxena and Gerald M. Knapp

Describes research into the problem of estimating the distribution parameters of failure data of industrial equipment subject to two failure modes.It is assumed that time to…

440

Abstract

Describes research into the problem of estimating the distribution parameters of failure data of industrial equipment subject to two failure modes. It is assumed that time to failure data are available, but it is unknown for each failure which of the two main failure modes caused the event. A loglikelihood method was developed and tested on generated mixed failure mode data. Shortcomings of this method triggered the development of two additional methods, MINESS and MINESS+, which minimize the error sum of squares of the reliability function, after separating the failure data into two sets.

Details

Journal of Quality in Maintenance Engineering, vol. 3 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 April 1990

B. Kirwan, B. Martin, H. Rycraft and A. Smith

Human error data in the form of human error probabilities should ideally form the corner‐stone of human reliability theory and practice. In the history of human reliability

Abstract

Human error data in the form of human error probabilities should ideally form the corner‐stone of human reliability theory and practice. In the history of human reliability assessment, however, the collection and generation of valid and usable data have been remarkably elusive. In part the problem appears to extend from the requirement for a technique to assemble the data into meaningful assessments. There have been attempts to achieve this, THERP being one workable example of a (quasi) database which enables the data to be used meaningfully. However, in recent years more attention has been focused on the PerformanceShaping Factors (PSF) associated with human reliability. A “database for today” should therefore be developed in terms of PSF, as well as task/ behavioural descriptors, and possibly even psychological error mechanisms. However, this presumes that data on incidents and accidents are collected and categorised in terms of the PSF contributing to the incident, and such classification systems in practice are rare. The collection and generation of a small working database, based on incident records are outlined. This has been possible because the incident‐recording system at BNFL Sellafield does give information on PSF. Furthermore, the data have been integrated into the Human Reliability Management System which is a PSF‐based human reliability assessment system. Some of the data generated are presented, as well as the PSF associated with them, and an outline of the incident collection system is given. Lastly, aspects of human common mode failure or human dependent failures, particularly at the lower human error probability range, are discussed, as these are unlikely to be elicited from data collection studies, yet are important in human reliability assessment. One possible approach to the treatment of human dependent failures, the utilisation of human performance‐limiting values, is described.

Details

International Journal of Quality & Reliability Management, vol. 7 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 2 May 2017

Preeti Wanti Srivastava and Tanu Gupta

Accelerated life test is undertaken to induce early failure in high-reliability products likely to last for several years. Most of these products are exposed to several fatal risk…

Abstract

Purpose

Accelerated life test is undertaken to induce early failure in high-reliability products likely to last for several years. Most of these products are exposed to several fatal risk factors and fail due to one of them. Examples include solar lighting device with two failure modes: capacitor failure, and controller failure. It is necessary to assess each risk factor in the presence of other risk factors as each one cannot be studied in isolation. The purpose of this paper is to explore formulation of optimum time-censored accelerated life test model under modified ramp-stress loading when different failure causes have independent exponential life distributions.

Design/methodology/approach

The modified ramp-stress uses one test chamber in place of the various chambers used in the normal ramp-stress accelerate life test thus saving experimental cost. The stress-life relationship is modeled by inverse power law, and for each failure cause, a cumulative exposure model is assumed. The method of maximum likelihood is used for estimating design parameters. The optimal plan consists in finding out relevant experimental variables, namely, stress rate and stress rate change point(s).

Findings

The optimal plan is devised using D-optimality criterion which consists in finding out optimal stress rate and optimal stress rate change point by maximizing logarithm of determinant of Fisher information matrix to the base 10. This criterion is motivated by the fact that the volume of joint confidence region of model parameters is inversely proportional to square root of determinant of Fisher information matrix. The results of sensitivity analysis show that the plan is robust to small deviations from the true values of baseline parameters.

Originality/value

The model formulated can help reliability engineers obtain reliability estimates quickly of high-reliability products that are likely to last for several years.

Details

International Journal of Quality & Reliability Management, vol. 34 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 29 April 2021

Suyuan Wang, Huaming Song and Canran Gong

Companies face the critical reliability problem of products due to the development of outsourcing. This study intends to provide some feasible solutions for a company to improve…

234

Abstract

Purpose

Companies face the critical reliability problem of products due to the development of outsourcing. This study intends to provide some feasible solutions for a company to improve the reliability level of products.

Design/methodology/approach

The paper considers the reward and reliability decisions regarding a product made with two complementary components from two different suppliers: high-capable and low-capable. Two kinds of reliability improvement incentives (normal incentive and cost-sharing incentive) through which a manufacturer provides a reward and shares the reliability improvement cost with a supplier are discussed. As the Stackelberg leader, the manufacturer determines the strategy, while the suppliers are responsible for determining its reliability. Using a game-theoretic framework, four different contract scenarios are addressed. We develop analytical methods to better understand how the manufacturer decides the incentive mechanism to be used for the suppliers.

Findings

The results show that cost-sharing contracts do not always lead to a higher reliability level and more enormous profits. Setting a target reliability level is better for the manufacturer. The cost-sharing contract is beneficial for a high-capable supplier even though it does not directly participate in that kind of mechanism. A low-capable supplier gains more profit when the manufacturer provides incentive mechanisms that do not specify a target reliability level.

Originality/value

This paper investigates the reliability improvement mechanism used for complementary products and focuses on identifying the optimal decisions when demand is influenced by the gap between the product's failure rate and the standard failure rate.

Details

The TQM Journal, vol. 33 no. 8
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 25 November 2019

Mahdi Karbasian and Ramin Rostamkhani

The purpose of this paper is to find the proper statistical distribution function, which can cover the failure time of a single machine or a group of machines. To this end, an…

Abstract

Purpose

The purpose of this paper is to find the proper statistical distribution function, which can cover the failure time of a single machine or a group of machines. To this end, an innovative program is written in an Excel software, capable of assessing at least six statistical distribution functions. This research study intends to show the advantages of applying statistical distribution functions in an integrated model format to create or increase productive reliability machines. Productive reliability is a simultaneous combination of efficiency and effectiveness in reliability.

Design/methodology/approach

The method of theoretical research methodology comprises data collection tools, reference books and articles in addition to exploiting written reports of the Iranian Center for Defence’s Standards. The practical research method includes deploying and assessing the proposed model for a selected machine (in this case a computerized numerical control machine).

Findings

A comprehensive program in an Excel software having the capability of assessing at least six statistical distribution functions was developed to find the most efficient option for covering the failure times of each machine in the shortest time with the highest precision. This is regarded as the most important achievement of the present study. Furthermore, the advantages of applying the developed model are discussed and a large group of which have direct influences on the productivity of equipment reliability.

Originality/value

The originality of the research was ascertained by managers and experts working in maintenance issues at the different levels of the Defense Industries Organization.

Details

International Journal of Quality & Reliability Management, vol. 37 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 June 2000

George K. Chako

Briefly reviews previous literature by the author before presenting an original 12 step system integration protocol designed to ensure the success of companies or countries in…

7259

Abstract

Briefly reviews previous literature by the author before presenting an original 12 step system integration protocol designed to ensure the success of companies or countries in their efforts to develop and market new products. Looks at the issues from different strategic levels such as corporate, international, military and economic. Presents 31 case studies, including the success of Japan in microchips to the failure of Xerox to sell its invention of the Alto personal computer 3 years before Apple: from the success in DNA and Superconductor research to the success of Sunbeam in inventing and marketing food processors: and from the daring invention and production of atomic energy for survival to the successes of sewing machine inventor Howe in co‐operating on patents to compete in markets. Includes 306 questions and answers in order to qualify concepts introduced.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 12 no. 2/3
Type: Research Article
ISSN: 1355-5855

Keywords

1 – 10 of over 7000