Search results

1 – 8 of 8
Article
Publication date: 1 October 2019

Qian Li, Weihua Cai, Xiaojing Tang, Yicheng Chen, Bingxi Li and Ching-Yao Chen

The aim of this study is to numerically simulate the density-driven convection in heterogeneous porous media associated with anisotropic permeability field, which is important to…

Abstract

Purpose

The aim of this study is to numerically simulate the density-driven convection in heterogeneous porous media associated with anisotropic permeability field, which is important to the safe and stable long term CO2 storage in laminar saline aquifers.

Design/methodology/approach

The study uses compact finite difference and the pseudospectral method to solve Darcy’s law.

Findings

The presence of heterogeneous anisotropy may result in non-monotonic trend of the breakthrough time and quantity of CO2 dissolved in the porous medium, which are important to the CO2 underground storage.

Originality/value

The manuscript numerically study the convective phenomena of mixture contained CO2 and brine. The phenomena are important to the process of CO2 enhanced oil recovery. Interesting qualitative patterns and quantitative trends are revealed in the manuscript.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 August 2020

Dhananjay Yadav

The purpose of this study is to examine the influence of rotation and varying gravitational strength on the onset of thermal convection in a porous medium layer numerically. The…

Abstract

Purpose

The purpose of this study is to examine the influence of rotation and varying gravitational strength on the onset of thermal convection in a porous medium layer numerically. The porous layer is acted to uniform rotation and inconsistent downward gravitational field which changing with depth from the layer. The authors presented three categories of gravitational strength deviancy, namely, linear, parabolic and exponential.

Design/methodology/approach

The higher-terms Galerkin weighted residual procedure is applied to get the eigenvalue of the problem.

Findings

The results illustrate that both rotation parameter and gravity variation parameter suspend the arrival of convection. The measurement of the convection cells decreases on enhancing the rotation parameter and gravity variation parameter.

Originality/value

It is also found that the scheme is more stable for category exponential, whereas it is more unstable for category parabolic.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 2015

Manuel Cánovas, Iván Alhama, Emilio Trigueros and Francisco Alhama

Natural convection with heat transfer in porous media has been subject of extensive study in engineering due to its numerous applications. A case of particular interest is the…

Abstract

Purpose

Natural convection with heat transfer in porous media has been subject of extensive study in engineering due to its numerous applications. A case of particular interest is the Bénard-type flow.The paper aims to discuss this issue.

Design/methodology/approach

Based on the network simulation method in order to solve this problem, a numerical model is proposed.

Findings

Nusselt-Rayleigh correlation is determined for a broad range of Rayleigh, the dimensionless number that influences the solution, above and below the threshold which separates the conduction and convection pure mechanisms.

Originality/value

Based on the network simulation method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2014

Anis Younes, Ahmed Makradi, Ali Zidane, Qian Shao and Lyazid Bouhala

– The purpose of this paper is to develop an efficient non-iterative model combining advanced numerical methods for solving buoyancy-driven flow problems.

Abstract

Purpose

The purpose of this paper is to develop an efficient non-iterative model combining advanced numerical methods for solving buoyancy-driven flow problems.

Design/methodology/approach

The solution strategy is based on two independent numerical procedures. The Navier-Stokes equation is solved using the non-conforming Crouzeix-Raviart (CR) finite element method with an upstream approach for the non-linear convective term. The advection-diffusion heat equation is solved using a combination of Discontinuous Galerkin (DG) and Multi-Point Flux Approximation (MPFA) methods. To reduce the computational time due to the coupling, the authors use a non-iterative time stepping scheme where the time step length is controlled by the temporal truncation error.

Findings

Advanced numerical methods have been successfully combined to solve buoyancy-driven flow problems on unstructured triangular meshes. The accuracy of the results has been verified using three test problems: first, a synthetic problem for which the authors developed a semi-analytical solution; second, natural convection of air in a square cavity with different Rayleigh numbers (103-108); and third, a transient natural convection problem of low Prandtl fluid with horizontal temperature gradient in a rectangular cavity.

Originality/value

The proposed model is the first to combine advanced numerical methods (CR, DG, MPFA) for buoyancy-driven flow problems. It is also the first to use a non-iterative time stepping scheme based on local truncation error control for such coupled problems. The developed semi analytical solution based on Fourier series is also novel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2014

Amgad Salama, Mohamed El Amin and Shuyu Sun

The problem of natural convection in two cavities separated by an anisotropic central solid wall is considered numerically. When the thermal conductivity of the central wall is…

Abstract

Purpose

The problem of natural convection in two cavities separated by an anisotropic central solid wall is considered numerically. When the thermal conductivity of the central wall is anisotropic, heat flux and temperature gradient vectors are no longer coincidence. This apparently has interesting influences on the heat and fluid flow patterns in this system. The paper aims to discuss these issues.

Design/methodology/approach

In this work, several flow patterns have been investigated covering a wide range of Rayleigh number up to 108. Several thermal conductivity anisotropy scenarios of the central wall have been investigated including 0, 30, 60, 120 and 150° principal anisotropy directions. The governing equations have been solved using control volume approach.

Findings

Probably the most intriguing is that, for some anisotropy scenarios it is found that the temperature at the same elevation at the side of the central wall which is closer to the colder wall is higher than that at the side closer to the hot wall. Apparently this defies intuition which suggests the reverse to have happened. However, this behavior may be explained in light of the effect of anisotropy. Furthermore, the patterns of streamlines and temperature fields in the two enclosures also changes as a consequence of the change of the central wall temperatures for the different anisotropy scenarios.

Originality/value

This work discusses a very interesting topic related to heat energy exchange among two compartments when the separating wall is anisotropic. In some anisotropy scenarios, this leads to more uniform distribution of Nusselt number than the case when the wall is isotropic. Interesting patterns of natural convection is investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 September 2018

Pratibha Biswal and Tanmay Basak

This paper is aimed to study natural convection in enclosures with curved (concave and convex) side walls for porous media via the heatline-based heat flow visualization approach.

Abstract

Purpose

This paper is aimed to study natural convection in enclosures with curved (concave and convex) side walls for porous media via the heatline-based heat flow visualization approach.

Design/methodology/approach

The numerical scheme involving the Galerkin finite element method is used to solve the governing equations for several Prandtl numbers (Prm) and Darcy numbers (Dam) at Rayleigh number, Ram = 106, involving various wall curvatures. Finite element method is advantageous for curved domain, as the biquadratic basis functions can be used for adaptive automated mesh generation.

Findings

Smooth end-to-end heatlines are seen at the low Dam involving all the cases. At the high Dam, the intense heatline cells are seen for the Cases 1-2 (concave) and Cases 1-3 (convex). Overall, the Case 1 (concave) offers the largest average Nusselt number ( Nur¯) at the low Dam for all Prm. At the high Dam, Nur¯ for the Case 1 (concave) is the largest involving the low Prm, whereas Nur¯ is the largest for Case 1 (convex) involving the high Prm.

Practical implications

Thermal management for flow systems involving curved surfaces which are encountered in various practical applications may be complicated. The results of the current work may be useful for the material processing, thermal storage and solar heating applications

Originality/value

The heatline approach accompanied by energy flux vectors is used for the first time for the efficient heat flow visualization during natural convection involving porous media in the curved walled enclosures involving various wall curvatures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2010

O.D. Makinde and M. Maserumule

The purpose of this paper is to investigate the inherent irreversibility and thermal stability in the flow of a variable viscosity fluid through a cylindrical pipe with convective…

Abstract

Purpose

The purpose of this paper is to investigate the inherent irreversibility and thermal stability in the flow of a variable viscosity fluid through a cylindrical pipe with convective cooling at the surface.

Design/methodology/approach

The non‐linear momentum and energy equations governing the flow are solved analytically using a perturbation method coupled with a special type of Hermite‐Padé approximation technique implemented numerically on MAPLE.

Findings

Expressions for dimensionless velocity and temperature, thermal criticality conditions and entropy generation number are obtained. A decrease in the fluid viscosity enhances both entropy generation rate and the dominant effect of heat transfer irreversibility near the wall

Originality/value

This paper presents the application of the second law of thermodynamics and a special type of Hermite‐Padé approximation technique to variable viscosity cylindrical pipe flow with convective cooling at the wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2007

D. McBride, N. Croft and M. Cross

To improve flow solutions on meshes with cells/elements which are distorted/ non‐orthogonal.

Abstract

Purpose

To improve flow solutions on meshes with cells/elements which are distorted/ non‐orthogonal.

Design/methodology/approach

The cell‐centred finite volume (FV) discretisation method is well established in computational fluid dynamics analysis for modelling physical processes and is typically employed in most commercial tools. This method is computationally efficient, but its accuracy and convergence behaviour may be compromised on meshes which feature cells with non‐orthogonal shapes, as can occur when modelling very complex geometries. A co‐located vertex‐based (VB) discretisation and partially staggered, VB/cell‐centred (CC), discretisation of the hydrodynamic variables are investigated and compared with purely CC solutions on a number of increasingly distorted meshes.

Findings

The co‐located CC method fails to produce solutions on all the distorted meshes investigated. Although more expensive computationally, the co‐located VB simulation results always converge whilst its accuracy appears to grace‐fully degrade on all meshes, no matter how extreme the element distortion. Although the hybrid, partially staggered, formulations also allow solutions on all the meshes, the results have larger errors than the co‐located vertex based method and are as expensive computationally; thus, offering no obvious advantage.

Research limitations/implications

Employing the ability of the VB technique to resolve the flow field on a distorted mesh may well enable solutions to be obtained on complex meshes where established CC approaches fail

Originality/value

This paper investigates a range of cell centred, vertex based and hybrid approaches to FV discretisation of the NS hydrodynamic variables, in an effort characterize their capability at generating solutions on meshes with distorted or non‐orthogonal cells/elements.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 8 of 8