Search results

1 – 10 of over 30000
Article
Publication date: 22 July 2022

Shafahat Ali, Said Abdallah, Deepak H. Devjani, Joel S. John, Wael A. Samad and Salman Pervaiz

This paper aims to investigate the effects of build parameters and strain rate on the mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) by integrating…

Abstract

Purpose

This paper aims to investigate the effects of build parameters and strain rate on the mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) by integrating digital image correlation and desirability function analysis. The build parameters included in this paper are the infill density, build orientation and layer height. These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design.

Design/methodology/approach

The Taguchi method was used to shortlist a set of 18 different combinations of build parameters and testing conditions. Accordingly, 18 specimens were 3D printed using those combinations and put through a series of uniaxial tensions tests with digital image correlation. The mechanical properties deduced for all 18 tests were then used in a desirability function analysis where the mechanical properties were optimized to determine the ideal combination of build parameters and strain rate loading conditions.

Findings

By comparing the tensile mechanical experimental properties results between Taguchi's recommended parameters and the optimal parameter found from the response table of means, the composite desirability had increased by 2.08%. The tensile mechanical properties of the PLA specimens gradually decrease with an increase in the layer height, while they increase with increasing the infill densities. On the other hand, the mechanical properties have been affected by the build orientation and the strain rate in similar increasing/decreasing trends. Additionally, the obtained optimized results suggest that changing the infill density has a notable impact on the overall result, with a contribution of 48.61%. DIC patterns on the upright samples revealed bimodal strain patterns rendering them more susceptible to failures because of printing imperfections.

Originality/value

These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 30 November 2011

Massimo Guidolin

I review the burgeoning literature on applications of Markov regime switching models in empirical finance. In particular, distinct attention is devoted to the ability of Markov…

Abstract

I review the burgeoning literature on applications of Markov regime switching models in empirical finance. In particular, distinct attention is devoted to the ability of Markov Switching models to fit the data, filter unknown regimes and states on the basis of the data, to allow a powerful tool to test hypotheses formulated in light of financial theories, and to their forecasting performance with reference to both point and density predictions. The review covers papers concerning a multiplicity of sub-fields in financial economics, ranging from empirical analyses of stock returns, the term structure of default-free interest rates, the dynamics of exchange rates, as well as the joint process of stock and bond returns.

Details

Missing Data Methods: Time-Series Methods and Applications
Type: Book
ISBN: 978-1-78052-526-6

Keywords

Article
Publication date: 1 March 2006

Alan E. Richardson

Conflicting claims have been made in relation to the effects of polypropylene fibres on the compressive strength of concrete. The purpose of this paper is to examine the effects…

2410

Abstract

Purpose

Conflicting claims have been made in relation to the effects of polypropylene fibres on the compressive strength of concrete. The purpose of this paper is to examine the effects on compressive strength of various dosages of monofilament polypropylene fibres when used in concrete. Compressive strength is widely used as the key indicator of concrete quality and therefore needs accurate determination. Monofilament fibres and air entrainment provide a similar function in that they provide freeze/thaw protection, they are both compared against a plain concrete sample to determine relative strength and density.

Design/methodology/approach

Two different concrete design strengths (medium and high) were examined with varying amounts and types of polypropylene fibre fraction/volume to establish a common link between fibre additions and reduced final compressive strength.

Findings

The findings from the test programme showed a linear reduction in strength which was observed as being directly related to fibre inclusion in concrete. Density was also found to be reduced with the addition of fibres in a similar degree to that of air entrainment.

Research limitations/implications

The lower density of concrete with polypropylene fibre additions was not scientifically explained and this aspect currently forms part of a long term freeze/thaw research programme, which will examine pore spacing and void formation compared to plain concrete.

Originality/value

This paper is of interest to clients, concrete manufacturers, concrete additive manufacturers, designers, surveyors and specifiers who need to know what effect polypropylene fibre additives have upon the final compressive strength.

Details

Structural Survey, vol. 24 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Abstract

This article surveys recent developments in the evaluation of point and density forecasts in the context of forecasts made by vector autoregressions. Specific emphasis is placed on highlighting those parts of the existing literature that are applicable to direct multistep forecasts and those parts that are applicable to iterated multistep forecasts. This literature includes advancements in the evaluation of forecasts in population (based on true, unknown model coefficients) and the evaluation of forecasts in the finite sample (based on estimated model coefficients). The article then examines in Monte Carlo experiments the finite-sample properties of some tests of equal forecast accuracy, focusing on the comparison of VAR forecasts to AR forecasts. These experiments show the tests to behave as should be expected given the theory. For example, using critical values obtained by bootstrap methods, tests of equal accuracy in population have empirical size about equal to nominal size.

Details

VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims
Type: Book
ISBN: 978-1-78190-752-8

Keywords

Book part
Publication date: 13 May 2017

Hugo Jales and Zhengfei Yu

This chapter reviews recent developments in the density discontinuity approach. It is well known that agents having perfect control of the forcing variable will invalidate the…

Abstract

This chapter reviews recent developments in the density discontinuity approach. It is well known that agents having perfect control of the forcing variable will invalidate the popular regression discontinuity designs (RDDs). To detect the manipulation of the forcing variable, McCrary (2008) developed a test based on the discontinuity in the density around the threshold. Recent papers have noted that the sorting patterns around the threshold are often either the researcher’s object of interest or may relate to structural parameters such as tax elasticities through known functions. This, in turn, implies that the behavior of the distribution around the threshold is not only informative of the validity of a standard RDD; it can also be used to recover policy-relevant parameters and perform counterfactual exercises.

Details

Regression Discontinuity Designs
Type: Book
ISBN: 978-1-78714-390-6

Keywords

Article
Publication date: 17 October 2017

Tracie Prater, Quincy Bean, Niki Werkheiser, Richard Grguel, Ron Beshears, Terry Rolin, Tim Huff, Richard Ryan, Frank Ledbetter and Erick Ordonez

Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out…

Abstract

Purpose

Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human space exploration. The purpose of this mission is to prove out the fused deposition modeling (FDM) process in the microgravity environment, evaluate microgravity effects on the materials manufactured, and provide the first demonstration of on-demand manufacturing for space exploration.

Design/methodology/approach

In 2014, NASA, in cooperation with Made in Space, Inc., launched a 3D printer to the ISS with the goal of evaluating the effect of microgravity on the fused deposition modeling (FDM) process and prove out the technology for use on long duration, long endurance missions where it could leveraged to reduce logistics requirements and enhance crew safety by enabling a rapid response capability. This paper presents the results of testing of the first phase of prints from the technology demonstration mission, where 21 parts where printed on orbit and compared against analogous specimens produced using the printer prior to its launch to ISS.

Findings

Mechanical properties, dimensional variations, structural differences and chemical composition for ground and flight specimens are reported. Hypotheses to explain differences observed in ground and flight prints are also developed. Phase II print operations, which took place in June and July of 2016, and ground-based studies using a printer identical to the hardware on ISS, will serve to answer remaining questions about the phase I data set. Based on Phase I analyses, operating the FDM process in microgravity has no substantive effect on the material produced.

Practical implications

Demonstrates that there is no discernable, engineering significant effect on operation of FDM in microgravity. Implication is that material characterization activities for this application can be ground-based.

Originality/value

Summary of results of testing of parts from the first operation of 3D printing in a microgravity environment.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 July 2013

Tara L. Cavalline and David C. Weggel

Reuse of construction and demolition (C&D) waste as aggregates is becoming increasingly popular for a number of environmental and economic reasons. The purpose of this paper is to…

2000

Abstract

Purpose

Reuse of construction and demolition (C&D) waste as aggregates is becoming increasingly popular for a number of environmental and economic reasons. The purpose of this paper is to explore this topic.

Design/methodology/approach

In this study, structural‐ and pavement‐grade portland cement concrete (PCC) mixtures were developed using crushed recycled brick masonry from a demolition site as a replacement for conventional coarse aggregate. Prior to developing concrete mixtures, testing was performed to determine properties of whole clay brick and tile, as well as the crushed recycled brick masonry aggregate (RBMA), and a database of material properties was developed.

Findings

Concrete mixtures exhibiting acceptable workability and other fresh concrete properties were obtained, and tests were performed to assess mechanical properties and durability performance of the hardened concrete. Results indicated that recycled brick masonry aggregate concrete (RBMAC) mixtures can exhibit mechanical properties comparable to that of structural‐ and pavement‐grade PCC containing conventional coarse aggregates.

Research limitations/implications

Results for durability performance were mixed, but additional testing to evaluate durability performance is recommended.

Practical implications

Although RBMAC has been untested in field applications, results of laboratory studies performed to date indicate that this material shows promise for use in pavement and structural applications. Future testing of RBMAC in both laboratory and field settings will allow stakeholders to gain a comfort level with its properties, identify specific potential uses, and establish guidelines that will assist in ensuring acceptable service life performance.

Originality/value

From the standpoint of sustainability, use of recycled materials as aggregates provides several advantages. Landfill space used for disposal is decreased, and existing natural aggregate sources are not as quickly depleted. Use of recycled aggregates in lieu of virgin quarried aggregates can potentially result in a lower embodied energy of the concrete, although this is often dependent on hauling costs. This particularly holds true if the methodology used to compute the embodied energy of a structure accounts for the “recovery” of energy at the end of its service life.

Article
Publication date: 23 June 2021

Radhwan Bin Hussin, Safian Bin Sharif, Shayfull Zamree Bin Abd Rahim, Mohd Azlan Bin Suhaimi, Mohd Tanwyn Bin Mohd Khushairi, Abdellah Abdellah EL-Hadj and Norshah Afizi Bin Shuaib

Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of prototype…

Abstract

Purpose

Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of prototype applications, especially in the development of new products. The purpose of this study is to analyze the current application trends of RT techniques in producing hybrid mold inserts.

Design/methodology/approach

The direct and indirect RT techniques discussed in this paper are aimed at developing a hybrid mold insert using metal epoxy composite (MEC) in increasing the speed of tooling development and performance. An extensive review of the suitable development approach of hybrid mold inserts, material preparation and filler effect on physical and mechanical properties has been conducted.

Findings

Latest research studies indicate that it is possible to develop a hybrid material through the combination of different shapes/sizes of filler particles and it is expected to improve the compressive strength, thermal conductivity and consequently increasing the hybrid mold performance (cooling time and a number of molding cycles).

Research limitations/implications

The number of research studies on RT for hybrid mold inserts is still lacking as compared to research studies on conventional manufacturing technology. One of the significant limitations is on the ways to improve physical and mechanical properties due to the limited type, size and shape of materials that are currently available.

Originality/value

This review presents the related information and highlights the current gaps related to this field of study. In addition, it appraises the new formulation of MEC materials for the hybrid mold inserts in injection molding application and RT for non-metal products.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 August 2022

Aya Qatawna, Rabab Allouzi and Samih Qaqish

The primary objective of this study is to produce one-way slabs made of LWFC with low density and sufficient compressive strength suitable for structural purpose then investigate…

Abstract

Purpose

The primary objective of this study is to produce one-way slabs made of LWFC with low density and sufficient compressive strength suitable for structural purpose then investigate their flexural behavior under various types of reinforcement and thickness of the slab and the influence of addition of PP fibers reinforcement on the mechanical behavior of reinforced concrete slabs. The specimens were tested using four-point loading. The results concerning load capacity, deflection and failure mode and crack pattern for each specimen were obtained. Also, an analytical investigation of PP fiber and GFG contribution on the flexural behavior of foamed concrete slabs is studied to investigate the significant role of PP fiber on the stress distribution in reinforced foam concrete and predict the flexural moment capacity.

Design/methodology/approach

The materials used in this study are cement, fine aggregate (sand), water, PP fibers, foaming agent, chemical additives if required, steel reinforcing rebars and glass fiber grid. The combination of these constituent materials will be used to produce foamed concrete in this research Then this study will present the experimental program of one-way foamed concrete slabs including slabs reinforced with GFR grids and another with steel reinforcements. The slabs will be tested in the laboratory under static loading conditions to investigate their ultimate capacities. The flexural behavior is to the interest of the slabs reinforced with GFR grids reinforcements in comparison with that of one with steel reinforcing rebars. Three groups are considered. (1) Group I: two slabs of PP fiber foamed concrete with minimum required reinforcements. (2) Group II: two slabs of PP fiber foamed concrete with glass fiber grids. (3) Group III: two slabs of PP fiber foamed concrete with the minimum required reinforcements and glass fiber grids.

Findings

The experimental results proved the effectiveness and efficiency of this the new system in producing a low density of concrete below 1900 kg/m3 had a corresponding strength of about 17 MPa at least. Besides, the presence of PP fibers had a noticeable improvement on the flexural strength values for all the examined slabs. It was found that the specimens reinforced with steel reinforcement mesh carried higher flexural capacity compared to these reinforced with GFG only. The specimens reinforced with GFG exhibited the lowest flexural capacity due to GFG separation from the concrete substrate. Also, an analytical investigation to predict the flexural strength of all tested specimens was carried out. The analytical results were agreed with the experimental results. Therefore, LWFC can be used as a substitute lightweight concrete material for the production of structural concrete applications in the construction industries today.

Research limitations/implications

Foamed concrete is a wide field to discuss. To achieve the objectives of the project, the study is focused on the foamed concrete with the following limitations: (1) because the aim of this research is to produce foamed concrete suitable for structural purposes, it is decided to produce mixes within the density range 1300–1900 kg/m3. (2) Simply-supported slabs are of considered. (3) This study also looks out by using GFR and without it.

Originality/value

The main objectives of this study were producing structural foamed concrete slabs and investigate their flexural response for residential uses.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 July 2021

Bing Zhang, Raiyan Seede, Austin Whitt, David Shoukr, Xueqin Huang, Ibrahim Karaman, Raymundo Arroyave and Alaa Elwany

There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were…

Abstract

Purpose

There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM.

Design/methodology/approach

The printability assessment framework integrates analytical thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework.

Findings

Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature.

Originality/value

Although many literature studies investigate process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties.

1 – 10 of over 30000