Search results

1 – 10 of 428
Article
Publication date: 8 January 2018

Hongjuan Yang, Lin Fu, Yanhua Liu, Weiji Qian and Bo Hu

This paper aims to investigate the delamination wear properties of a carbon strip in a carbon strip rubbing against a copper wire at the high-sliding speed (380 km/h) with or…

Abstract

Purpose

This paper aims to investigate the delamination wear properties of a carbon strip in a carbon strip rubbing against a copper wire at the high-sliding speed (380 km/h) with or without electrical current.

Design/methodology/approach

The friction and wear properties of a carbon strip in a carbon strip rubbing against a copper wire are tested on the high-speed wear tester whose speed can reach up to 400 km/h. The test data have been collected by the high-speed data collector. The worn surfaces of the carbon strip are observed by the scanning electron microscope.

Findings

It was found that there was a significant increase of the delamination wear with the decrease of the normal load when the electric current is applied. The size of the flake-like peeling also increases with the decrease of normal load. The delamination wear extends gradually from the edge of the erosion pits to the surrounding area with the decrease of the normal load. However, the delamination wear never appears in the absence of electric current. It is proposed that the decreased normal load and the big electrical current are the major causes of the delamination wear of the carbon strip.

Originality value

The experimental test at high-sliding speed of 380 km/h was performed for the first time, and the major cause of the delamination was discovered in this paper.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 September 2013

S. Venkat Prasat and R. Subramanian

The purpose of this paper is to explore the use of fly ash and graphite particles as low cost reinforcing materials for improved wear resistance, enhanced mechanical properties…

Abstract

Purpose

The purpose of this paper is to explore the use of fly ash and graphite particles as low cost reinforcing materials for improved wear resistance, enhanced mechanical properties and reduction in density of hybrid composites.

Design/methodology/approach

The AlSi10Mg/fly ash/graphite (Al/FA/Gr) hybrid composite was synthesised by stir casting method. The dry sliding wear and friction behaviour of hybrid composites were studied using pin-on-disc machine by varying parameters like load and weight fraction of fly ash, and compared with the base metal alloy and aluminium-graphite composite. The tests were conducted with a constant sliding speed of 2 m/s and sliding distance of 2,400 m.

Findings

The hybrid composites exhibit higher hardness, higher tensile strength and lower density when compared to unreinforced alloy and aluminium-graphite composite. The incorporation of fly ash and graphite particles as reinforcements caused a reduction in the wear rate and coefficient of friction (COF) of the hybrid composites. The improvement in the tribological characteristics occured due to the load carrying capacity of hard fly ash particles and the formation of a lubricating film of graphite between the sliding interfaces. The wear rates and COF of unreinforced aluminium alloy and composites increase with an increase in the applied normal load. The wear rates and COF of hybrid composites decrease with an increase in the fly ash content. 9 wt.% fly ash and 3 wt.% graphite reinforced hybrid composite exhibited the highest wear resistance and lowest COF at all applied loads. Abrasive wear and delamination were dominant in the mild wear regime of aluminium alloy and composites. Due to subsurface deformation and crack propagation, plate-like wear debris were generated during delamination wear. In the severe wear regime, the dominant wear mechanism was adhesive wear with formation of transfer layers.

Practical implications

It is expected that these findings will contribute towards the development of lightweight and low cost aluminium products with improved tribological and mechanical properties.

Originality/value

The wear and friction data have been made available in this article for the use of Al/FA/Gr hybrid composites in tribological applications.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1976

P.L. Hurricks

The first part of this paper appeared in our November/December issue and dealt with fretting wear behaviour of mild steel from room temperature to 600°C in air. The general…

Abstract

The first part of this paper appeared in our November/December issue and dealt with fretting wear behaviour of mild steel from room temperature to 600°C in air. The general mechanism for fretting is discussed at all temperatures where normal oxidative processes become involved. The nature of fretting wear is also covered and the effects of temperature are described. In this part of the paper, the discussion is continued to include triboxidation, delamination theory, atmospheric environment, transition temperatures, activitation energy and other factors affecting the influence of temperature on fretting.

Details

Industrial Lubrication and Tribology, vol. 28 no. 1
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 18 July 2023

Chaofan Jia, Shaolin Li, Xiuhua Guo, Juanhua Su and Kexing Song

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites…

51

Abstract

Purpose

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites under different service parameters was probed. The purpose of this study is to provide a theoretical basis for the application of CF-Al2O3/Cu composites.

Design/methodology/approach

The composites were fabricated by internal oxidation combined with powder metallurgy. The current-carrying tribological properties of CF-Al2O3/Cu composites were investigated on an electrical damage test system at different loads and currents.

Findings

As the load increases, the wear mechanism of the composite changes from abrasive wear to delamination wear. As the current increases, the oxidation wear and arc erosion of the composites gradually intensified. Under the service parameters of 0–25 A and 30–40 N, the composite has relatively stable current-carrying tribological properties.

Originality/value

This paper could provide a theoretical basis for the practical application of CF-Al2O3/Cu composites.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2020

Teng Xiao, Daosheng Wen, Shouren Wang, Mingyuan Zhang, Beibei Kong and Qiqi Yu

This paper aims to investigate the fretting wear mechanism of an Al-Li alloy at room temperature, the tangential fretting wear tests were carried out.

Abstract

Purpose

This paper aims to investigate the fretting wear mechanism of an Al-Li alloy at room temperature, the tangential fretting wear tests were carried out.

Design/methodology/approach

The effects of displacement amplitude and fretting frequency on the tangential fretting wear characteristics were mainly investigated. The experimental data obtained are analyzed and compared.

Findings

The results indicated that the fretting friction coefficient increased with the increase of displacement amplitude. As the displacement amplitude increased, the wear scar morphology changed significantly, mainly in terms of delamination debris and furrow scratches. The wear mechanism changed from initial mild wear to more severe oxidative wear, adhesive wear and abrasive wear.

Originality/value

This paper extends the knowledge into mechanical tight connections. The conclusions can provide theoretical guidance for the fretting of mechanical tight connections in the field of automotive lightweight and aerospace.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0490/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 June 2014

C. Velmurugan, R. Subramanian, S.S. Ramakrishnan, S. Thirugnanam, T. Kannan and B. Anandavel

The purpose of this paper is to investigate the influence of most predominant heat-treatment parameters on the wear behavior of Al6061 hybrid composite reinforced with 10 weight…

Abstract

Purpose

The purpose of this paper is to investigate the influence of most predominant heat-treatment parameters on the wear behavior of Al6061 hybrid composite reinforced with 10 weight per cent SiC and 2 weight per cent graphite particles.

Design/methodology/approach

The aluminum hybrid composite was produced using stir casting process. Wear testing of heat-treated samples was carried out using a pin-on-disc apparatus. Experiments were conducted by applying design of experiments (DOE) technique. The experimental values were used for formulation of a mathematical model. The wear surfaces of composite specimens were analyzed using scanning electron microscope (SEM).

Findings

The volume loss of heat-treated composite initially decreased with increasing aging duration. This was followed by the attainment of a minimum and then a reversal in the trend at longer aging times. SEM micrographs of the wear surfaces of the composite show that the wear mechanisms were abrasion, delamination and adhesion.

Originality/value

In this paper, the hybrid composite was produced using stir casting route, and its wear properties after heat treatment were tested using pin-on-disc apparatus. It was found that heat treatment had a profound effect on the wear behaviour of the developed composite.

Details

Industrial Lubrication and Tribology, vol. 66 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2020

Bilal Kurşuncu

The effect of cryogenic heat treatment on the mechanical properties of different materials has been frequently investigated by researchers in recent years. The purpose of this…

Abstract

Purpose

The effect of cryogenic heat treatment on the mechanical properties of different materials has been frequently investigated by researchers in recent years. The purpose of this paper is to investigate wear behaviour of monolayer, multilayer and nanocomposite coatings after cryogenic heat treatment. It is a first in its field in terms of both the heat treatment used and the coatings examined.

Design/methodology/approach

The aCN/TiAlN, TiAlN and ncTiAlSiN hard coatings deposited on the AISI D2 steel substrate were subjected to cryogenic heat treatment at −145oC and −196oC for 24 h and then tempered at 200oC for 2 h. Then, the samples were subjected to wear tests of 5, 10 and 15 N three different load values. The wear mechanisms occurring on the wear surfaces were determined by scanning electron microscope supported by EDS.

Findings

Oxidation, fatigue and delamination wear mechanisms were realized on the surfaces of the samples subjected to dry sliding wear test. The wear resistance of S1 increased with cryogenic heat treatment. According to the wear test results of the untreated samples, it was found that the samples with lower hardness than the others had higher wear resistance. The wear resistance of S1 and S2 samples was increased by cryogenic heat treatment. The best wear resistance in all parameters was obtained by S1. Oxidation in the S1 was found to have a positive effect on wear resistance. According to EDS results after wear of S2, chromium-rich layer was found on the surface of the material. It is understood that cryogenic heat treatment causes carbide precipitation in the inner structure of the substrate material.

Originality/value

The effect of cryogenic heat treatment on the mechanical properties of different materials has been frequently investigated by researchers in recent years. In this study, wear behaviour of monolayer, multilayer and nanocomposite coatings after cryogenic heat treatment was investigated. It is a first in its field in terms of both the heat treatment used and the coatings examined.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0111/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 May 2021

Jiaqi Pan, Xiaoshan Liu, Guoqiu He, Bin Ge, Peiwen Le, Jingquan Li and Zhiqiang Zhou

The purpose of this paper is to understand the effect of particle content, applied load and sliding speed on the tribological properties of A356-SiCP composites manufactured using…

Abstract

Purpose

The purpose of this paper is to understand the effect of particle content, applied load and sliding speed on the tribological properties of A356-SiCP composites manufactured using a newly developed vacuum stir casting technique.

Design/methodology/approach

A356 alloy reinforced with 10, 15 and 20 vol% SiC particles was prepared by vacuum stir casting. Tribological tests were carried out on block-on-ring tribometer under dry sliding conditions, room temperature. Wear mechanism was investigated by scanning electron microscope and energy dispersion spectrum.

Findings

SiCP is homogeneously dispersed in the matrix. The increase in SiCP content decrease wear rate, but it leads to an increase in coefficient of friction. The wear rate increase and friction coefficient present different variation trends with increasing load. For A356-20%SiCP composite, when the load is less than 10 MPa, wear rate and friction coefficient under sliding speed of 400 rpm are lower than those of 200 rpm. Wear mechanism transition from abrasion, oxidation, delamination, adhesion to plastic flow as load and sliding speed increasing.

Practical implications

Results of this study will help guide the use of A356-SiCP in many automotive products such as brake rotors, brake pads, brake drums and pistons.

Originality/value

There are few paper studies the effect of particle content, applied load and sliding speed on the tribological properties of A356-SiCP composites. Aluminum matrix composites with uniform distribution of reinforcing particles were successfully prepared by using the newly developed vacuum stir casting technique.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2018

Ming Qiu, Rui Zhang, Yingchun Li, Hui Du and Xiao Xu Pang

The MoS2/graphite composite coatings modified by La2O3 through spraying technique were successfully prepared on the inner rings of spherical plain bearings. As a comparison…

Abstract

Purpose

The MoS2/graphite composite coatings modified by La2O3 through spraying technique were successfully prepared on the inner rings of spherical plain bearings. As a comparison, unmodified coatings were also prepared. This paper aims to study the La-modified MoS2/graphite composite coating experimentally and improve the tribological performance of self-lubricating spherical plain bearings.

Design/methodology/approach

The performance of La2O3 toward the friction coefficient, temperature rise and wear rate of the coatings was studied by a self-made tribo-tester under different swing cycles. And the texture, surface morphology and element composition of the coatings were characterized by scanning electron microscope, energy dispersive spectroscopy and X-ray diffractometry.

Findings

The additives La2O3 refined the coatings’ microstructure and improved the tribological properties of the coatings. The oxidation of Mo + 4 to Mo + 6 was effectively inhibited. And the amount of abrasive grains, peeling pits and local cracks on the coatings surface decreased and homogeneous lubricating films formed, which were attributed to the existence of La2O3. The wear mechanisms of unmodified coatings were severe abrasive wear, adhesive wear and delamination wear. However, it exhibited superior wear resistance of the La-modified coatings to unmodified coatings, presenting slight abrasive wear and adhesive wear. The service life of bearings was prolonged under the protection of the modified coatings.

Originality/value

The paper proposed a new modified MoS2/Graphite composite coating for the self-lubricating spherical plain bearings. The investigation on the friction, wear and temperature increase behaviors and the wear mechanisms of the coatings are beneficial to prolonging the service life of the self-lubricating spherical plain bearings.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 December 2019

Hao Wang, Kai Ren, Jin Xie, Chen Zhang and Wencheng Tang

The face-centered cubic structured single-phase FeCoNiCrMn high-entropy alloys (HEAs) were prepared to study the friction and wear behavior of HEAs under MoS2-oil lubrication.

Abstract

Purpose

The face-centered cubic structured single-phase FeCoNiCrMn high-entropy alloys (HEAs) were prepared to study the friction and wear behavior of HEAs under MoS2-oil lubrication.

Design/methodology/approach

FeCoNiCrMn alloys were subjected to ball-on-disc reciprocating sliding against the GCr15 ball. L25(56) orthogonal wear tests were designed for velocity Vrel (4.167-20.833 mm/s), load FN (10-50 N), temperature T (RT-140 °C) and time t (5-20 min). Based on orthogonal test results, multivariate repeated measures ANOVA was performed, and further comparative experiments were conducted for Vrel, FN and T. Energy dispersive spectrometer and scanning electron microscope were applied to characterize the surface morphology of wear scar and its element distribution.

Findings

Vrel, FN and t exerted the most significant influence (p < 0.01) on the average friction coefficient f. Vrel and FN were identified as the momentous effect (p < 0.01) on wear volume ΔV. T (≥50 °C) had positive correlation with f and ΔV, and both Vrel and FN correlated negatively with f. The dominant abrasive wear was attributed to the large hardness difference of the friction pair. Fatigue wear and delamination wear were experienced at higher speeds (Vrel  ≥ 12.5 mm/s) and loading levels (FN ≥ 40 N). Elevated temperature weakens the lubrication effect of MoS2-oil and the mechanical properties of FeCoNiCrMn matrix, intensifying abrasive wear.

Originality/value

This study is expected to provide references for exploration on the wear behavior of single-phase HEAs under complex working conditions with lubrication and hence will help develop the application of HEAs in practical engineering.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0303

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 428