Search results

1 – 10 of over 2000
Article
Publication date: 6 February 2023

Nofirman Firdaus, Hasnida Ab-Samat and Bambang Teguh Prasetyo

This paper reviews the literature on maintenance strategies for energy efficiency as a potential maintenance approach. The purpose of this paper is to identify the main concept…

Abstract

Purpose

This paper reviews the literature on maintenance strategies for energy efficiency as a potential maintenance approach. The purpose of this paper is to identify the main concept and common principle for each maintenance strategy for energy efficiency.

Design/methodology/approach

A literature review has been carried out on maintenance and energy efficiency. The paper systematically classified the literature into three maintenance strategies (e.g. inspection-based maintenance [IBM], time-based maintenance [TBM] and condition-based maintenance [CBM]). The concept and principle of each maintenance strategy are identified, compared and discussed.

Findings

Each maintenance strategy's main concept and principle are identified based on the following criteria: data required and collection, data analysis/modeling and decision-making. IBM relies on human senses and common senses to detect energy faults. Any detected energy losses are quantified to energy cost. A payback period analysis is commonly used to justify corrective actions. On the other hand, CBM monitors relevant parameters that indicate energy performance indicators (EnPIs). Data analysis or deterioration modeling is needed to identify energy degradation. For the diagnostics approach, the energy degradation is compared with the threshold to justify corrective maintenance. The prognostics approach estimates when energy degradation reaches its threshold; therefore, proper maintenance tasks can be planned. On the other hand, TBM uses historical data from energy monitoring. Data analysis or deterioration modeling is required to identify degradation. Further analysis is performed to find the optimal time to perform a maintenance task. The comparison between housekeeping, IBM and CBM is also discussed and presented.

Practical implications

The literature on the classification of maintenance strategies for energy efficiency has been limited. On the other hand, the ISO 50001 energy management systems standard shows the importance of maintenance for energy efficiency (MFEE). Therefore, to bridge the gap between research and industry, the proposed concept and principle of maintenance strategies will be helpful for practitioners to apply maintenance strategies as energy conservation measures in implementing ISO 50001 standard.

Originality/value

The novelty of this paper is in-depth discussion on the concept and principle of each maintenance strategy (e.g. housekeeping or IBM, TBM and CBM) for energy efficiency. The relevant literature for each maintenance strategy was also summarized. In addition, basic rules for maintenance strategy selection are also proposed.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 10 October 2023

Sou-Sen Leu, Yen-Lin Fu and Pei-Lin Wu

This paper aims to develop a dynamic civil facility degradation prediction model to forecast the reliability performance tendency and remaining useful life under imperfect…

Abstract

Purpose

This paper aims to develop a dynamic civil facility degradation prediction model to forecast the reliability performance tendency and remaining useful life under imperfect maintenance based on the inspection records and the maintenance actions.

Design/methodology/approach

A real-time hidden Markov chain (HMM) model is proposed in this paper to predict the reliability performance tendency and remaining useful life under imperfect maintenance based on rare failure events. The model assumes a Poisson arrival pattern for facility failure events occurrence. HMM is further adopted to establish the transmission probabilities among stages. Finally, the simulation inference is conducted using Particle filter (PF) to estimate the most probable model parameters. Water seals at the spillway hydraulic gate in a Taiwan's reservoir are used to examine the appropriateness of the approach.

Findings

The results of defect probabilities tendency from the real-time HMM model are highly consistent with the real defect trend pattern of civil facilities. The proposed facility degradation prediction model can provide the maintenance division with early warning of potential failure to establish a proper proactive maintenance plan, even under the condition of rare defects.

Originality/value

This model is a new method of civil facility degradation prediction under imperfect maintenance, even with rare failure events. It overcomes several limitations of classical failure pattern prediction approaches and can reliably simulate the occurrence of rare defects under imperfect maintenance and the effect of inspection reliability caused by human error. Based on the degradation trend pattern prediction, effective maintenance management plans can be practically implemented to minimize the frequency of the occurrence and the consequence of civil facility failures.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 16 August 2023

Fanshu Zhao, Jin Cui, Mei Yuan and Juanru Zhao

The purpose of this paper is to present a weakly supervised learning method to perform health evaluation and predict the remaining useful life (RUL) of rolling bearings.

Abstract

Purpose

The purpose of this paper is to present a weakly supervised learning method to perform health evaluation and predict the remaining useful life (RUL) of rolling bearings.

Design/methodology/approach

Based on the principle that bearing health degrades with the increase of service time, a weak label qualitative pairing comparison dataset for bearing health is extracted from the original time series monitoring data of bearing. A bearing health indicator (HI) quantitative evaluation model is obtained by training the delicately designed neural network structure with bearing qualitative comparison data between different health statuses. The remaining useful life is then predicted using the bearing health evaluation model and the degradation tolerance threshold. To validate the feasibility, efficiency and superiority of the proposed method, comparison experiments are designed and carried out on a widely used bearing dataset.

Findings

The method achieves the transformation of bearing health from qualitative comparison to quantitative evaluation via a learning algorithm, which is promising in industrial equipment health evaluation and prediction.

Originality/value

The method achieves the transformation of bearing health from qualitative comparison to quantitative evaluation via a learning algorithm, which is promising in industrial equipment health evaluation and prediction.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 August 2022

Ronghua Cai, Jiamei Yang, Xuemin Xu and Aiping Jiang

The purpose of this paper is to propose an improved multi-objective optimization model for the condition-based maintenance (CBM) of single-component systems which considers…

Abstract

Purpose

The purpose of this paper is to propose an improved multi-objective optimization model for the condition-based maintenance (CBM) of single-component systems which considers periodic imperfect maintenance and ecological factors.

Design/methodology/approach

Based on the application of non-periodic preventive CBM, two recursion models are built for the system: hazard rate and the environmental degradation factor. This paper also established an optimal multi-objective model with a normalization process. The multiple-attribute value theory is used to obtain the optimal preventive maintenance (PM) interval. The simulation and sensitivity analyses are applied to obtain further rules.

Findings

An increase in the number of the occurrences could shorten the duration of a maintenance cycle. The maintenance techniques and maintenance efficiency could be improved by increasing system availability, reducing cost rate and improving degraded condition.

Practical implications

In reality, a variety of environmental situations may occur subsequent to the operations of an advanced manufacturing system. This model could be applied in real cases to help the manufacturers better discover the optimal maintenance cycle with minimized cost and degraded condition of the environment, helping the corporations better fulfill their CSR as well.

Originality/value

Previous research on single-component condition-based predictive maintenance usually focused on the maintenance costs and availability of a system, while ignoring the possible pollution from system operations. This paper proposed a modified multi-objective optimization model considering environment influence which could more comprehensively analyze the factors affecting PM interval.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 3 November 2022

Vinod Nistane

Rolling element bearings (REBs) are commonly used in rotating machinery such as pumps, motors, fans and other machineries. The REBs deteriorate over life cycle time. To know the…

Abstract

Purpose

Rolling element bearings (REBs) are commonly used in rotating machinery such as pumps, motors, fans and other machineries. The REBs deteriorate over life cycle time. To know the amount of deteriorate at any time, this paper aims to present a prognostics approach based on integrating optimize health indicator (OHI) and machine learning algorithm.

Design/methodology/approach

Proposed optimum prediction model would be used to evaluate the remaining useful life (RUL) of REBs. Initially, signal raw data are preprocessing through mother wavelet transform; after that, the primary fault features are extracted. Further, these features process to elevate the clarity of features using the random forest algorithm. Based on variable importance of features, the best representation of fault features is selected. Optimize the selected feature by adjusting weight vector using optimization techniques such as genetic algorithm (GA), sequential quadratic optimization (SQO) and multiobjective optimization (MOO). New OHIs are determined and apply to train the network. Finally, optimum predictive models are developed by integrating OHI and artificial neural network (ANN), K-mean clustering (KMC) (i.e. OHI–GA–ANN, OHI–SQO–ANN, OHI–MOO–ANN, OHI–GA–KMC, OHI–SQO–KMC and OHI–MOO–KMC).

Findings

Optimum prediction models performance are recorded and compared with the actual value. Finally, based on error term values best optimum prediction model is proposed for evaluation of RUL of REBs.

Originality/value

Proposed OHI–GA–KMC model is compared in terms of error values with previously published work. RUL predicted by OHI–GA–KMC model is smaller, giving the advantage of this method.

Open Access
Article
Publication date: 7 April 2023

Virginie Lavoye, Jenni Sipilä, Joel Mero and Anssi Tarkiainen

Virtual try-on (VTO) technology offers an opportunity for fashion and beauty brands to provide enriched self-explorative experiences. The increased popularity of VTOs makes it…

4104

Abstract

Purpose

Virtual try-on (VTO) technology offers an opportunity for fashion and beauty brands to provide enriched self-explorative experiences. The increased popularity of VTOs makes it urgent to understand the drivers and consequences of the exploration of styles in VTO contexts (herein called self-explorative engagement). Notably, little is known about the antecedent and outcomes of the personalized self-explorative experience central to VTOs. This paper aims to fill this knowledge gap.

Design/methodology/approach

An online quasi-experiment (N = 500) was conducted in the context of fashion and beauty VTOs. Participants were asked to virtually try on sunglasses or lipsticks and subsequently answer a questionnaire measuring the key constructs: self-presence (i.e. physical similarity and identification), self-explorative engagement (i.e. exploration of styles in VTO context), brand cognitive processing and brand attitude. The authors analyze the data with structural equation modeling via maximum likelihood estimation in LISREL.

Findings

The experience of self-presence during consumers’ use of VTOs in augmented reality environments has a positive effect on self-explorative engagement. Furthermore, a mediation analysis reveals that self-explorative engagement improves brand attitude via brand cognitive processing. The results are confirmed for two popular fashion and beauty brands.

Originality/value

Grounded in extended self theory, to the best of the authors’ knowledge, this is the first study to show that a realistic VTO experience encourages self-extension via a process starting from the exploration of styles and results in increased brand cognitive processing and more positive brand attitudes. The exploration of styles is enabled by self-presence.

Details

Journal of Services Marketing, vol. 37 no. 10
Type: Research Article
ISSN: 0887-6045

Keywords

Article
Publication date: 6 October 2022

Roman Fedorov and Dmitry Pavlyuk

Research questions: Is there a systemic relationship between different methods of screening candidates for predictive maintenance? How do the goals of a predictive project…

145

Abstract

Purpose

Research questions: Is there a systemic relationship between different methods of screening candidates for predictive maintenance? How do the goals of a predictive project influence the choice of a dropout method? How do the company’s characteristics implementing the predictive project influence the selection of the dropout method?

Design/methodology/approach

The authors described and compiled a taxonomy of currently known methods of screening candidate aircraft components for predictive maintenance for maintenance, repairs and overhaul organizations; identified the boundaries of each way; analyzed the advantages and disadvantages of existing methods; and formulated directions for further development of methods of screening for maintenance, repairs and overhaul organizations.

Findings

The authors identified the relationship between various screening methods by developing the approach proposed by Tiddens WW and supplementing it with economic methods. The authors built them into a single hierarchical structure and linked them with the parameters of the predictive project. The principal advantage of the proposed taxonomy is a clear relationship between the structure of the screening methods and the goals of the predictive project and the characteristics of the company that implements the project.

Originality/value

The authors of the article proposed groups of screening methods for predictive maintenance based on economic indicators to improve the effectiveness and efficiency of the screening process.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 2 March 2023

Kareem Mostafa, Tarek Hegazy, Robert D. Hunsperger and Stepanka Elias

This paper aims to use convolutional neural networks (CNNs) to provide an objective approach to classify deteriorated building assets according to the type and extent of damage…

Abstract

Purpose

This paper aims to use convolutional neural networks (CNNs) to provide an objective approach to classify deteriorated building assets according to the type and extent of damage. This research supports automated inspection of buildings and focuses on roofing elements as one of the most critical and externally distressed elements in buildings.

Design/methodology/approach

In this paper, 5,000+ images of deteriorated roofs from several buildings were collected to design a CNN system that automatically identifies and sizes roofing defects. Experimenting with different CNN formulations, the best accuracy is achieved using two-stage CNNs. The first-stage CNN classifies images into defect/no defect, while the second stage classifies the defected images according to the damage type. Based on the image classification, optimization is used to prioritize roof repairs by maximizing the return from limited rehabilitation funds.

Findings

The developed CNNs reached 95% and 97% accuracy for the first and second phases, respectively, which is higher than achieved in previous literature efforts. Using the proposed model to automate inspection and condition assessment activities proved to be faster than conventional methods. Repair/replace strategy for a case study of 21 campus buildings based on their condition and budgetary constraints was suggested.

Research limitations/implications

Future research includes testing different data acquisition technologies (e.g. infrared imaging), performing severity-based classification and integrating with BIM for defect localization.

Originality/value

This study provides an objective approach to automate asset condition assessment and improve funding decisions using a combination of image analysis and optimization techniques. The proposed approach is applicable toward other asset types and components.

Article
Publication date: 8 December 2022

Abdallah Abdul-Mumuni, Barbara Deladem Mensah and Richard Amankwa Fosu

While there are enormous studies on the determinants of environmental degradation, empirical studies on the effect of renewable energy consumption and economic growth on the…

Abstract

Purpose

While there are enormous studies on the determinants of environmental degradation, empirical studies on the effect of renewable energy consumption and economic growth on the environment remain limited. The purpose of this paper is to examine the asymmetric effect of renewable energy consumption and economic growth on environmental degradation in 31 selected sub-Saharan African countries spanning from 1990 to 2018.

Design/methodology/approach

To examine possible asymmetric effects of the exogenous variables on environmental degradation, we used the panel nonlinear autoregressive distributed lag approach and secondary data was sourced from the World Bank (2021).

Findings

The cointegration test results suggest that there is a long-run cointegration among the variables whereas our main findings indicate that environmental degradation responds asymmetrically to changes in renewable energy consumption and economic growth. The results further reveal that both positive and negative shocks in renewable energy consumption reduce environmental degradation. On the other hand, positive and negative shocks in economic growth increase environmental degradation in the long run.

Research limitations/implications

The implications of this study include the need for policymakers in sub-Saharan Africa to encourage the utilization of renewable energy as it reduces environmental degradation. Also, governments in the subregion should gradually replace the usage of fossil fuels by adapting renewable energy sources so as to achieve higher economic growth.

Originality/value

The positive and negative shocks of renewable energy consumption and economic growth on environmental degradation are examined to ascertain their asymmetric relationships.

Details

International Journal of Energy Sector Management, vol. 17 no. 5
Type: Research Article
ISSN: 1750-6220

Keywords

1 – 10 of over 2000