Search results

1 – 10 of over 8000
Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1443

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 October 2018

Xiaokai Mu, Qingchao Sun, Wei Sun, Yunlong Wang, Chuanhua Wang and Xiaobang Wang

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to…

Abstract

Purpose

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to analyze the influence mechanism of flexible parts deformation on the geometric precision, and then to ensure the reliability and stability of the mechanical system.

Design/methodology/approach

Firstly, this paper adopts the N-GPS to analyze the influence mechanism of flexible parts deformation on the geometric precision and constructs a coupling 3D tolerance mathematical model of the geometric tolerance and the load deformation deviation based on the SDT theory, homogeneous coordinate transformation theory and surface authentication idea. Secondly, the least square method is used to fit the deformation surface of the mating surface under load so as to complete the conversion from the non-ideal element to the ideal element.

Findings

This paper takes the horizontal machining center as a case to obtain the deformation information of the mating surface under the self-weight load. The results show that the deformation deviation of the parts has the trend of transmission and accumulation under the load. The terminal deformation cumulative amount of the system is up to –0.0249 mm, which indicated that the influence of parts deformation on the mechanical system precision cannot be ignored.

Originality/value

This paper establishes a comprehensive 3D tolerance mathematical model, which comprehensively considers the effect of the dimensional tolerance, geometric tolerance and load deformation deviation. By this way, the assembly precision of mechanical system can be accurately predicted.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 June 2022

Ke Ma, Yu Li, Guoyang Liu, Gang He, Chun Sha and Yilin Peng

The purpose of this study is to investigate the deformation characteristics and failure modes of the right bank slope of Xiluodu Hydropower Station after excavation.

Abstract

Purpose

The purpose of this study is to investigate the deformation characteristics and failure modes of the right bank slope of Xiluodu Hydropower Station after excavation.

Design/methodology/approach

Micro-seismic monitoring technology is applied to obtain the microfracture information and study the internal damage evolution law of the slope rock mass. A numerical model for discontinuous deformation analysis (DDA) is established to analyse the deformation characteristics and failure mode of the slope. Micro-seismic monitoring and DDA can verify and supplement each other's results in the investigation of slope failure.

Findings

The results show that the slope has a downhill displacement along the weathered zone under natural conditions; the maximum resultant displacement at the monitoring point is 380 mm. The micro-seismic events are concentrated in an area located 30–100 m horizontally away from the slope surface and at an elevation of 390–470 m. The distribution of these micro-seismic events is consistent with the location of the unloading and weathered zones; it is the same as the DDA simulation result.

Originality/value

The study is anticipated to be used as reference for the stability analysis of rock slopes. By combining the continuous (micro-seismic monitoring technology) and discontinuous (DDA) methods, the entire process starting from the gradual accumulation of internal rock micro-damage to the macroscopic discontinuous deformation and failure of the slope can be investigated.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

Xiang Yu, Degao Zou, Xianjing Kong and Long Yu

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This…

Abstract

Purpose

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This issue has been often studied using the small-strain finite element (FE) method in previous research. This paper aims to research the interaction behaviour between a concrete cut-off wall and high-plasticity clay using large-deformation FE analyses.

Design/methodology/approach

The re-meshing and interpolation technique with a small-strain (RITSS) method was performed using an independently developed program and adopted for large-deformation FE analyses, and a suitable element size for the high-plasticity clay region was suggested. The layered construction process of an earth core dam built on thick alluviums was simulated using the RITSS method incorporating a hyperbolic model for soil.

Findings

The RITSS method is an effective technique for simulating the soil–structure interaction during dam construction. The RITSS analysis predicted a higher maximum principle stress of the concrete cut-off wall and higher stress levels in the high-plasticity clay region than small-strain FE analysis.

Originality/value

A practical method for large-deformation FE analysis was advised and was used for the first time to study the interaction between a concrete cut-off wall and high-plasticity clay in dam engineering. Large deformation in the high-plasticity clay was handled using the RITSS method. Moreover, the penetration process of the concrete cut-off wall into the high-plasticity clay was captured using a favourable element shape and mesh density.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 May 2014

E. Perumalsamy, J.C. Sakthivel and N. Anbumani

The purpose of this paper is to elucidate the stress-strain relationships of single-jersey knitted fabrics from uniaxial tensile test followed by deformation behavior using finite…

Abstract

Purpose

The purpose of this paper is to elucidate the stress-strain relationships of single-jersey knitted fabrics from uniaxial tensile test followed by deformation behavior using finite element analysis. In order to elaborate the study, high, medium and low tightness knitted fabrics were selected and deformation of fabrics analyzed in course, wales and bias directions (0, 45 and 90 degrees).

Design/methodology/approach

This study focussed on uni-axial tensile test of produced test samples using Instron 6021 tester and a development of single-jersey knitted loop model using Auto Desk Inventor software (ADI). The knitted fabric material properties and knitted loop model was imported to ANSYS 12.0 software.

Findings

Due to structural changes the tightness and thickness of knitted fabric decreases with increase in loop length The tensile result shows maximum breaking strength at course direction (13.43 kg f/mm2 at 2.7 mm) and maximum extension at wales direction (165.77 kg f/mm2 at 3.3 mm). When the loop length increases, the elongation of fabrics increased and load carrying capacity of fabrics reduced. The Young's modulus, Poisson's ratio and shear modulus of fabrics reduced with increase in loop length. The deformation of fabrics increased with increase in loop length. The increase in loop length gives large amount of structural changes and it is due to slacking or jamming in loops and loosening in dimensions. When comparing the deformation results, the variation within the fabric is higher and structural damage little more when increasing the loop length of the fabric.

Originality/value

From ANOVA test, stress and strain distribution was statistically significant among course, wales and bias directions at 95 percent confidence level. The values got from Instron test indicates that testing direction can alter its deformation. In deformation analysis, comparing both experimental and prediction, high amount of structural changes observed in wales direction. The used tetrahedral elements can be used for contact analysis with high accuracy. For non-linear problems, consistent approach was proposed which makes the sense to compare with experimental methods. The proposed model will make possible developments and the preliminary validation tests shows good agreement with experimental data.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 November 2017

Seishiro Matsubara, Kenjiro Tarada, Takaya Kobayashi, Toshiyuki Saitou, Manabu Umeda, Yasuko Mihara, Kai Oide, Hiroto Shin and Yasuhiro Katsuda

The purpose of this paper is to propose a set of constitutive functions for dried bodies for accurate prediction of the entire deformation process of ceramic products during…

Abstract

Purpose

The purpose of this paper is to propose a set of constitutive functions for dried bodies for accurate prediction of the entire deformation process of ceramic products during firing and to present relevant methods for determining their coefficients from a series of respective thermo-mechanical analysis (TMA) tests.

Design/methodology/approach

The function forms of the sintering-induced strain rate, viscoplastic multiplier and elastic modulus are formulated in order with reference to empirical data of relative densities. Separate TMA tests are conducted to identify their coefficients, while a stairway thermal cycle test is carried out to identify the parameters in the densification rate. Then, various finite element analyses (FEA) are performed for accuracy confirmation.

Findings

The performances of the present constitutive functions along with the identified material parameters were validated in comparison with the relevant test results. It has then been confirmed that these functions enable us to some extent to accurately estimate the non-mechanical and mechanical deformations of dried bodies during firing. Also, by performing FEA of an actual sanitary ware product, the applicability and capability of the proposed set of constitutive functions could be demonstrated.

Practical implications

The present methodology with the proposed constitutive functions is a simple, but reliable and practical approach for simulating the deformation process of arbitrary ceramic products subjected to firing and applicable for practical applications in various engineering fields.

Originality/value

The constitutive functions of the viscoplastic multiplier and elastic modulus, which enable us to properly characterize the mechanical behavior of dried bodies subjected to firing, are originally formulated in analogy with that of the sintering-induced strain.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 May 2023

Pengfei Zhou, Shufeng Tang, Yubin Liu, Jie Zhao and Zaiyong Sun

This study aims to the complex and unpredictable terrain environment of the Qinghai-Tibet Plateau scientific research station, such as cement road, wetland, gravel desert…

Abstract

Purpose

This study aims to the complex and unpredictable terrain environment of the Qinghai-Tibet Plateau scientific research station, such as cement road, wetland, gravel desert, snowfield, ice surface, grassland, slimy ground, steep slope, step, etc., a reconfigurable walking mechanism based on two movement modes of wheel and triangular crawler was proposed.

Design/methodology/approach

By analyzing the deformation mechanism of the walking mechanism, a reconfigurable wheel-crawler-integrated walking mechanism and the configuration scheme are designed. The analysis of the kinematics and mechanical properties of the swing arm system and the deformation mechanism of the walking mechanism.

Findings

The reconfigurable wheel-crawler-integrated walking mechanism can be switched between the wheel and triangular crawler modes by driving the deformation mechanism. Through the numerical simulation of its movement process, and the trial production and experiment of the prototype, indicates the validity of the reconfigurable wheel-crawler-integrated walking mechanism design.

Originality/value

The work of this paper provides a reconfigurable wheel-crawler-integrated-walking mechanism, which can be used by robots in the Qinghai-Tibet Plateau scientific research station. It has excellent reconfigurability and can effectively improve the robot’s adaptability to complex terrain.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 March 2024

Muhammed Turan Aslan, Bahattin Kanber, Hasan Demirtas and Bilal Sungur

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Abstract

Purpose

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Design/methodology/approach

An experimental setup was designed, experiments were conducted and the obtained results were compared with the finite element results. The deformations were measured according to various flow rates of electrolyte. In finite element calculations, the pressure distribution created by the electrolyte on the blade surface was obtained in the ANSYS® (A finite element analysis software) Fluent software and transferred to the static structural where the deformation analysis was carried out. Three different parameters were examined, namely blade thickness, blade material and electrolyte pressure on blade disk caused by mass flow rate. The deformation results were compared with the gap distances between cathode and anode.

Findings

Large deformations were obtained at the free end of the blade and the most curved part of it. The appropriate pressure values for the electrolyte to be used in the production of blisk blades were proposed numerically. It has been determined that high pressure applications are not suitable for gap distance lower than 0.5 mm.

Originality/value

When the literature is examined, it is required that the high speed flow of the electrolyte is desired in order to remove the parts that are separated from the anode from the machining area during electrochemical machining. However, the electrolyte flowing at high speeds causes high pressure in the blisk blades, excessive deformation and vibration of the machined part, and as a result, contact of the anode with the cathode. This study provides important findings for smooth electro chemical machining at high electrolyte flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 8000