Search results

1 – 10 of over 3000
Article
Publication date: 20 June 2022

Bhupendra Singh Rana, Subhrajit Dutta, Pabitra Ranjan Maiti and Chandrasekhar Putcha

The present study is based on finding the structural response of a tensile membrane structure (TMS) through deformation. The intention of the present research is to develop a…

Abstract

Purpose

The present study is based on finding the structural response of a tensile membrane structure (TMS) through deformation. The intention of the present research is to develop a basic understanding of reliability analysis and deflection behavior of a pre-tensioned TMS. The mean value first-order second-moment method (MVFOSM) method is used here to evaluate stochastic moments of a performance function with random input variables. Results suggest the influence of modulus of elasticity, the thickness of the membrane, and edge span length are significant for reliability based TMS design.

Design/methodology/approach

A simple TMS is designed and simulated by applying external forces (along with prestress), as a manifestation of wind and snow load. A nonlinear analysis is executed to evaluate TMS deflection, followed by calculating the reliability index. Parametric study is done to consider the effect of membrane material, thickness and load location. First-order second moment (FOSM) is used to evaluative the reliability. A comparison of reliability index is done and deflection variations from μ − 3s to μ + 3s are accounted for in this approach.

Findings

The effectiveness of deflection is highlighted for the reliability assessment of TMS. Reliability and parametric study collectively examine the proposed geometry and material to facilitate infield design requirements. The estimated β value indicates that most suitable fabric material for a simple TMS should possess an elasticity modulus in the range of 1,000–1,500 MPa, the thickness may be considered to be around 1.00 mm, and additional adjustment of around 5–10 mm is suggested for edge length. The loading position in case of TMS structures can be a sensitive aspect where the rigidity of the surface is dependent on the pre-tensioning of the membrane.

Research limitations/implications

The significance of the parametric study on material and loading for deflection of TMS is emphasized. Due to the lack of consolidated literature in the field combining reliability with deflection limits of a TMS, this work can be very useful for researchers.

Practical implications

The present work outcome may facilitate practitioners in determining effective design methodology and material selection for TMS construction.

Originality/value

The significance of parametric study for serviceability criteria is emphasized. Parameters like pre-stress can be included in future parametric studies to witness in depth behavior of TMS. Due to lack of consolidated literature in the field combining reliability with deflection limits of a TMS, this work can be very useful for the researchers. The present work outcome may facilitate practitioners in determining effective design methodology and material selection for TMS construction.

Details

International Journal of Structural Integrity, vol. 13 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 22 September 2022

Marcin Figat

This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that…

1514

Abstract

Purpose

This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that needs a lot of detailed aerodynamic analysis which describes the mutual impact of the main parts of the aircraft. The purpose of this paper is to build the numerical model that allows to make an analysis of necessary flaps (front and rear) deflection and prepare the control strategy for this kind of aircraft.

Design/methodology/approach

Aircrafts’ aerodynamic characteristics were obtained using the MGAERO software which is a commercial computing fluid dynamics tool created by Analytical Methods, Inc. This software uses the Euler flow model. Results from this software were used in the static stability evaluation and trim condition analysis. The trim conditions are the outcome of the optimisation process whose goal was to find the best front and rear flap deflection to achieve the best lift to drag (L/D) ratio.

Findings

The main outcome of this investigation is the proposal of strategy for the front and rear flap deflection which ensured the maximum L/D ratio and satisfied the trim condition. Moreover, the analysis of the mutual impact of the front and rear wings and the analysis of the control surface impact on the aerodynamic characteristic of the aircraft are presented.

Research limitations/implications

In terms of aerodynamic computation, MGAERO software uses an inviscid flow model. However, this research is for the conceptual stage of the design and the MGAERO software grantee satisfied accurate respect to relatively low time of computations.

Practical implications

The ultimate goal is to build an aircraft in a tandem wing configuration and to conduct flying tests or wind tunnel tests. The presented result is one of the milestones to achieve this goal.

Originality/value

The aircraft in the tandem wing configuration is an aerodynamic-coupled configuration that needs detailed analysis to find the mutual interaction between the front and rear wings. Moreover, the mutual impact of the front and rear flaps is necessary too. Obtaining these results allowed this study to build the numerical model of the aircraft in the tandem wing configuration. It allows to find the best strategy of flap deflection, which allows to obtain the maximum L/D ratio and satisfy the trim condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 July 2016

Nasrin Jafari and Mojtaba Azhari

The purpose of this paper is to present a simple HP-cloud method as an accurate meshless method for the geometrically nonlinear analysis of thick orthotropic plates of general…

Abstract

Purpose

The purpose of this paper is to present a simple HP-cloud method as an accurate meshless method for the geometrically nonlinear analysis of thick orthotropic plates of general shape. This method is used to investigate the effects of thickness, geometry of various shapes, boundary conditions and material properties on the large deformation analysis of Mindlin plates.

Design/methodology/approach

Nonlinear analysis of plates based on Mindlin theory is presented. The equations are derived by the Von-Karman assumption and total Lagrangian formulations. Newton-Raphson method is applied to achieve linear equations from nonlinear equations. Simple HP-cloud method is used for the construction of the shape functions based on Kronecker-δ properties, so the essential boundary conditions can be enforced directly. Shepard function is utilized for a partition of unity and complete polynomial is used as an enrichment function.

Findings

The suitability and efficiency of the simple HP-cloud method for the geometrically nonlinear analysis of thin and moderately thick plates is studied for the first time. Large displacement analysis of various shapes of plates, rectangular, skew, trapezoidal, circular, hexagonal and triangular with different boundary conditions subjected to distributed loading are considered.

Originality/value

This paper shows that the simple HP-cloud method is well suited for the large deformation analysis of Mindlin plates with various geometries, because it uses a set of a few arbitrary nodes placed in a plate of general shape. Moreover the convergence rate of the proposed method is high and the cost of solving equations is low.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 May 2023

Fatimah De’nan, Nor Salwani Hashim and Mohd Yusri Mohamad Razak

Tapered steel sections are widely used in house building design due to their structural efficiency and aesthetic appearance. Due to the practical usage of web tapering…

Abstract

Purpose

Tapered steel sections are widely used in house building design due to their structural efficiency and aesthetic appearance. Due to the practical usage of web tapering specifications in the metal building industry, fabrication and material expenses are analyzed to achieve geometric and economic productivity. The purpose of this study is to investigate the effectiveness of utilizing web profiles with openings in reducing the weight of steel beams.

Design/methodology/approach

In this paper, the nonlinear analysis of the bending behavior of a tapered steel section with an opening was studied by finite element analysis. The results were then compared with those of the tapered steel section without an opening in terms of displacement and yield moment.

Findings

The bending capacity of a tapered steel section was analyzed using finite element analysis. Results showed that the tapered steel section without openings had a higher bending capacity compared to the section with various sizes of web openings. The results also showed that decreasing the number of openings would increase the bending capacity, whereas increasing the size of the opening would decrease it. The difference in the yield moment between the tapered steel section with and without openings was only 15.818%. A total of 60 nonlinear analyses were conducted to investigate the effect of the number and size of web openings, flange thickness and web thickness on the bending behavior. However, this study showed that web opening with octagon shape and 0.6D size of web opening, where D is the depth of section, showed the best section in terms of yield moment and volume reduction compared to other opening size and shape.

Originality/value

It is also found that tapered steel section has better moment resistance in thicker flange and web. The study is valuable for engineers and designers who work with steel structures and need to optimize the performance of tapered steel sections with web openings.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 August 2014

Dominik Jurków

– The paper aims to present the influence of the co-firing process conditions of low temperature co-fired ceramics (LTCC) on the deformation of thin LTCC membranes.

Abstract

Purpose

The paper aims to present the influence of the co-firing process conditions of low temperature co-fired ceramics (LTCC) on the deformation of thin LTCC membranes.

Design/methodology/approach

The statistical design of the experiment methodology was used in the frame of these investigations to reduce the time and costs of the experiments and to ensure easier interpretation of the obtained results. Moreover, this conception permits the rough estimation of the membrane deflection fired at optimal process conditions.

Findings

The applied design of the experiment methodology allowed the researchers to find the optimal co-firing process conditions and to estimate the membrane deflection at the optimal process conditions. The estimation fits well with the results of real measurement that was conducted to confirm the estimation precision.

Research limitations/implications

The experiment was conducted for only one type of LTCC, DP951. The precision of the design of the experiment optimization and estimation of the response at optimal conditions depend on the described object. Therefore, the findings of this paper do not have to be generally true for other LTCC tapes, and if other LTCC tapes deformation should be investigated, then similar analysis shall be conducted for them.

Practical implications

The deformation of LTCC membranes affects the sensitivity and repeatability of LTCC acceleration and pressure sensors. Hence, the decrease of membrane deflection increases the usability of LTCC in such applications.

Originality/value

This paper presents simple optimization of co-firing process conditions of LTCC devices using statistical design of the experiment.

Details

Microelectronics International, vol. 31 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 December 1956

A.E. Johnson, V.D. Mathur and J. Henderson

This work was undertaken to examine the possibility of predicting the creep deflexion of magnesium alloy struts from tensile creep data. Creep deflexion tests on magnesium alloy…

Abstract

This work was undertaken to examine the possibility of predicting the creep deflexion of magnesium alloy struts from tensile creep data. Creep deflexion tests on magnesium alloy struts at room temperature, under four loads, and lasting 1,000 hours, have been made and interpreted by the use of tensile creep test data for the same magnesium alloy. For strut deflexions small compared with length, and such that plane sections of the strut remain plane, it appears that the following assumptions arc reasonable: (i) during bending and compression creep of the strut similar relations exist between the stress, time and creep strain, as under conditions of simple tensile or compressive creep; and (ii) the rate of creep in any fibre of the strut is a function only of the current stress and time and not of the path by which the current conditions arc reached. These assumptions appear to lead to an average error in computed values of deflexion of an order which for practical purposes is small. It seems reasonably possible that the above mentioned assumptions may be expected to hold for struts of heat resistant material at elevated temperatures such as are met with in practice, provided that the order of deflexion is analogous to that occurring in the current tests, and the creep characteristics of the material are of a generally similar nature.

Details

Aircraft Engineering and Aerospace Technology, vol. 28 no. 12
Type: Research Article
ISSN: 0002-2667

Book part
Publication date: 19 October 2012

Dawn T. Robinson, Jody Clay-Warner, Christopher D. Moore, Tiffani Everett, Alexander Watts, Traci N. Tucker and Chi Thai

Purpose – This paper proposes a new procedure for measuring affective responses during social interaction using facial thermographic imaging.Methodology – We first describe the…

Abstract

Purpose – This paper proposes a new procedure for measuring affective responses during social interaction using facial thermographic imaging.

Methodology – We first describe the results of several small pilot experiments designed to develop and refine this new measure that reveal some of the methodological advantages and challenges offered by this measurement approach. We then demonstrate the potential utility of this measure using data from a laboratory experiment (N=114) in which we used performance feedback to manipulate identity deflection and measured several types of affective responses – including self-impressions and emotions.

Findings – We find warming of the brow (near the corrugator muscle) and cheek (near the zygomatic major muscle) related most strongly to emotion valence and self-potency, with those whose brows and cheeks warmed the most feeling less positive emotion and less potent self-impressions. Warming in the eye area (near the orbicularis oculi) related most closely to undirected identity deflection and to positive self-sentiments. Positive self-views and strong identity disruptions both contributed to warming of the eyes.

Implications – The rigor of contemporary sociological theories of emotion exceeds our current ability to empirically test these theories. Facial thermographic imaging may offer sociologists new assessments of affect and emotion that are ecologically valid, socially unreactive, temporally sensitive, and accurate. This could dramatically improve our ability to test and develop affect based theories of social interaction.

Details

Biosociology and Neurosociology
Type: Book
ISBN: 978-1-78190-257-8

Keywords

Article
Publication date: 7 April 2023

Chiara Bedon and Christian Louter

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in…

Abstract

Purpose

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in common loading and boundary conditions. Differing from earlier literature efforts, the present study elaborates on the load-bearing capacity, failure time and fire endurance of ordinary glass elements under fire exposure and sustained mechanical loads, with evidence of major trends in terms of loading condition and cross-sectional layout. Traditional verification approaches for glass in cold conditions (i.e. stress peak check) and fire endurance of load-bearing members (i.e. deflection and deflection rate limits) are assessed based on parametric numerical simulations.

Design/methodology/approach

The mechanical performance of structural glass elements in fire still represents an open challenge for design and vulnerability assessment. Often, special fire-resisting glass solutions are used for limited practical applications only, and ordinary soda-lime silica glass prevails in design applications for load-bearing members. Moreover, conventional recommendations and testing protocols in use for load-bearing members composed of traditional constructional materials are not already addressed for glass members. This paper elaborates on the fire endurance and failure detection methods for structural glass beams that are subjected to standard ISO time–temperature for fire exposure and in-plane bending mechanical loads. Fire endurance assessment methods are discussed with the support of Finite Element (FE) numerical analyses.

Findings

Based on extended parametric FE analyses, multiple loading, geometrical and thermo-mechanical configurations are taken into account for the analysis of simple glass elements under in-plane bending setup and fire exposure. The comparative results show that – in most of cases – thermal effects due to fire exposure have major effects on the actual load-bearing capacity of these members. Moreover, the conventional stress peak verification approach needs specific elaborations, compared to traditional calculations carried out in cold conditions.

Originality/value

The presented numerical results confirm that the fire endurance analysis of ordinary structural glass elements is a rather complex issue, due to combination of multiple aspects and influencing parameters. Besides, FE simulations can provide useful support for a local and global analysis of major degradation and damage phenomena, and thus support the definition of simple and realistic verification procedures for fire exposed glass members.

Article
Publication date: 1 September 1999

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers…

4353

Abstract

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers, brakes, gears, bearings, gaskets and seals are handled. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of this paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An Appendix included at the end of the paper presents a bibliography on finite element applications in the analysis/design of machine elements for 1977‐1997.

Details

Engineering Computations, vol. 16 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000