Search results

1 – 10 of over 1000
Article
Publication date: 13 February 2023

Oguz Kose and Tugrul Oktay

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic…

Abstract

Purpose

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic approximation (i.e. SPSA), deep neural network and proportional integral derivative (i.e. PID) according to varying arm length (i.e. morphing).

Design/methodology/approach

In this paper, proper PID gain coefficients and morphing ratio were obtained using the stochastic optimization method, also known as SPSA to maximize flight efficiency. Because it is difficult to establish an analytical connection between the morphing ratio and hexarotor moments of inertia, the deep neural network was used to obtain the moments of inertia according to the morphing ratio. By using SPSA and deep neural network, the best performance indexes were obtained and both longitudinal and lateral flight simulations were performed with the obtained data.

Findings

With SPSA, the best PID coefficients and morphing ratio are obtained for both longitudinal and lateral flight. Because the hexarotor solid body model changes according to the morphing ratio, the moment of inertia values used in the simulations also change. According to the morphing ratio, the moment of inertia values was obtained with the deep neural network over a created data set.

Research limitations/implications

It takes a long time to obtain the morphing ratio suitable for the hexarotor model and the PID gain coefficients suitable for this morphing ratio. However, this situation can be overcome with the proposed SPSA. In addition, it takes a long time to obtain the appropriate moments of inertia according to the morphing ratio. However, in this case, it was overcome using the deep neural network.

Practical implications

Determining the morphing ratio and PID gain coefficients using the optimization method, as well as determining the moments of inertia using the deep neural network, is very useful as it can increase the efficiency of hexarotor flight and flight efficiently with different arm lengths. With the proposed method, the hexarotor design performance criteria (i.e. rise time, settling time and overshoot) values were significantly improved compared to similar studies.

Social implications

Determining the hexarotor flight parameters using SPSA and deep neural network provides advantages in terms of time, cost and applicability.

Originality/value

The hexarotor flight efficiency is improved with the proposed SPSA and deep neural network approaches. In addition, the desired flight parameters can be obtained more quickly and reliably with the proposed approaches. The design performance criteria were also improved, enabling the hexarotor UAV to follow the given trajectory in the best way and providing convenience for end users. SPSA was preferred because it converged faster than other methods. While other methods perform 2n operations per iteration, SPSA only performs two operations. To obtain the moment of inertia, many physical parameter values of the UAV are required in the existing methods. In the proposed method, by creating a date set, only arm length and moment of inertia were estimated without the need to obtain physical parameters with the deep neural network structure.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 May 2022

Qiucheng Liu

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of…

Abstract

Purpose

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Design/methodology/approach

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Findings

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Originality/value

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Details

Library Hi Tech, vol. 41 no. 5
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 12 April 2024

Youwei Li and Jian Qu

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous…

Abstract

Purpose

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous driving, the authors found that the trained neural network model performs poorly in untrained scenarios. Therefore, the authors proposed to improve the transfer efficiency of the model for new scenarios through transfer learning.

Design/methodology/approach

First, the authors achieved multi-task autonomous driving by training a model combining convolutional neural network and different structured long short-term memory (LSTM) layers. Second, the authors achieved fast transfer of neural network models in new scenarios by cross-model transfer learning. Finally, the authors combined data collection and data labeling to improve the efficiency of deep learning. Furthermore, the authors verified that the model has good robustness through light and shadow test.

Findings

This research achieved road tracking, real-time acceleration–deceleration, obstacle avoidance and left/right sign recognition. The model proposed by the authors (UniBiCLSTM) outperforms the existing models tested with model cars in terms of autonomous driving performance. Furthermore, the CMTL-UniBiCL-RL model trained by the authors through cross-model transfer learning improves the efficiency of model adaptation to new scenarios. Meanwhile, this research proposed an automatic data annotation method, which can save 1/4 of the time for deep learning.

Originality/value

This research provided novel solutions in the achievement of multi-task autonomous driving and neural network model scenario for transfer learning. The experiment was achieved on a single camera with an embedded chip and a scale model car, which is expected to simplify the hardware for autonomous driving.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Content available
Article
Publication date: 12 April 2022

Monica Puri Sikka, Alok Sarkar and Samridhi Garg

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been…

1401

Abstract

Purpose

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been discussed in this review. Scientists have linked the underlying structural or chemical science of textile materials and discovered several strategies for completing some of the most time-consuming tasks with ease and precision. Since the 1980s, computer algorithms and machine learning have been used to aid the majority of the textile testing process. With the rise in demand for automation, deep learning, and neural networks, these two now handle the majority of testing and quality control operations in the form of image processing.

Design/methodology/approach

The state-of-the-art of artificial intelligence (AI) applications in the textile sector is reviewed in this paper. Based on several research problems and AI-based methods, the current literature is evaluated. The research issues are categorized into three categories based on the operation processes of the textile industry, including yarn manufacturing, fabric manufacture and coloration.

Findings

AI-assisted automation has improved not only machine efficiency but also overall industry operations. AI's fundamental concepts have been examined for real-world challenges. Several scientists conducted the majority of the case studies, and they confirmed that image analysis, backpropagation and neural networking may be specifically used as testing techniques in textile material testing. AI can be used to automate processes in various circumstances.

Originality/value

This research conducts a thorough analysis of artificial neural network applications in the textile sector.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 25 April 2023

Nehal Elshaboury, Eslam Mohammed Abdelkader, Abobakr Al-Sakkaf and Ashutosh Bagchi

The energy efficiency of buildings has been emphasized along with the continual development in the building and construction sector that consumes a significant amount of energy…

95

Abstract

Purpose

The energy efficiency of buildings has been emphasized along with the continual development in the building and construction sector that consumes a significant amount of energy. To this end, the purpose of this research paper is to forecast energy consumption to improve energy resource planning and management.

Design/methodology/approach

This study proposes the application of the convolutional neural network (CNN) for estimating the electricity consumption in the Grey Nuns building in Canada. The performance of the proposed model is compared against that of long short-term memory (LSTM) and multilayer perceptron (MLP) neural networks. The models are trained and tested using monthly electricity consumption records (i.e. from May 2009 to December 2021) available from Concordia’s facility department. Statistical measures (e.g. determination coefficient [R2], root mean squared error [RMSE], mean absolute error [MAE] and mean absolute percentage error [MAPE]) are used to evaluate the outcomes of models.

Findings

The results reveal that the CNN model outperforms the other model predictions for 6 and 12 months ahead. It enhances the performance metrics reported by the LSTM and MLP models concerning the R2, RMSE, MAE and MAPE by more than 4%, 6%, 42% and 46%, respectively. Therefore, the proposed model uses the available data to predict the electricity consumption for 6 and 12 months ahead. In June and December 2022, the overall electricity consumption is estimated to be 195,312 kWh and 254,737 kWh, respectively.

Originality/value

This study discusses the development of an effective time-series model that can forecast future electricity consumption in a Canadian heritage building. Deep learning techniques are being used for the first time to anticipate the electricity consumption of the Grey Nuns building in Canada. Additionally, it evaluates the effectiveness of deep learning and machine learning methods for predicting electricity consumption using established performance indicators. Recognizing electricity consumption in buildings is beneficial for utility providers, facility managers and end users by improving energy and environmental efficiency.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 July 2023

Nehal Elshaboury, Eslam Mohammed Abdelkader and Abobakr Al-Sakkaf

Modern human society has continuous advancements that have a negative impact on the quality of the air. Daily transportation, industrial and residential operations churn up…

Abstract

Purpose

Modern human society has continuous advancements that have a negative impact on the quality of the air. Daily transportation, industrial and residential operations churn up dangerous contaminants in our surroundings. Addressing air pollution issues is critical for human health and ecosystems, particularly in developing countries such as Egypt. Excessive levels of pollutants have been linked to a variety of circulatory, respiratory and nervous illnesses. To this end, the purpose of this research paper is to forecast air pollution concentrations in Egypt based on time series analysis.

Design/methodology/approach

Deep learning models are leveraged to analyze air quality time series in the 6th of October City, Egypt. In this regard, convolutional neural network (CNN), long short-term memory network and multilayer perceptron neural network models are used to forecast the overall concentrations of sulfur dioxide (SO2) and particulate matter 10 µm in diameter (PM10). The models are trained and validated by using monthly data available from the Egyptian Environmental Affairs Agency between December 2014 and July 2020. The performance measures such as determination coefficient, root mean square error and mean absolute error are used to evaluate the outcomes of models.

Findings

The CNN model exhibits the best performance in terms of forecasting pollutant concentrations 3, 6, 9 and 12 months ahead. Finally, using data from December 2014 to July 2021, the CNN model is used to anticipate the pollutant concentrations 12 months ahead. In July 2022, the overall concentrations of SO2 and PM10 are expected to reach 10 and 127 µg/m3, respectively. The developed model could aid decision-makers, practitioners and local authorities in planning and implementing various interventions to mitigate their negative influences on the population and environment.

Originality/value

This research introduces the development of an efficient time-series model that can project the future concentrations of particulate and gaseous air pollutants in Egypt. This research study offers the first time application of deep learning models to forecast the air quality in Egypt. This research study examines the performance of machine learning approaches and deep learning techniques to forecast sulfur dioxide and particular matter concentrations using standard performance metrics.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 18 December 2023

Volodymyr Novykov, Christopher Bilson, Adrian Gepp, Geoff Harris and Bruce James Vanstone

Machine learning (ML), and deep learning in particular, is gaining traction across a myriad of real-life applications. Portfolio management is no exception. This paper provides a…

Abstract

Purpose

Machine learning (ML), and deep learning in particular, is gaining traction across a myriad of real-life applications. Portfolio management is no exception. This paper provides a systematic literature review of deep learning applications for portfolio management. The findings are likely to be valuable for industry practitioners and researchers alike, experimenting with novel portfolio management approaches and furthering investment management practice.

Design/methodology/approach

This review follows the guidance and methodology of Linnenluecke et al. (2020), Massaro et al. (2016) and Fisch and Block (2018) to first identify relevant literature based on an appropriately developed search phrase, filter the resultant set of publications and present descriptive and analytical findings of the research itself and its metadata.

Findings

The authors find a strong dominance of reinforcement learning algorithms applied to the field, given their through-time portfolio management capabilities. Other well-known deep learning models, such as convolutional neural network (CNN) and recurrent neural network (RNN) and its derivatives, have shown to be well-suited for time-series forecasting. Most recently, the number of papers published in the field has been increasing, potentially driven by computational advances, hardware accessibility and data availability. The review shows several promising applications and identifies future research opportunities, including better balance on the risk-reward spectrum, novel ways to reduce data dimensionality and pre-process the inputs, stronger focus on direct weights generation, novel deep learning architectures and consistent data choices.

Originality/value

Several systematic reviews have been conducted with a broader focus of ML applications in finance. However, to the best of the authors’ knowledge, this is the first review to focus on deep learning architectures and their applications in the investment portfolio management problem. The review also presents a novel universal taxonomy of models used.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 12 October 2023

R.L. Manogna and Aayush Anand

Deep learning (DL) is a new and relatively unexplored field that finds immense applications in many industries, especially ones that must make detailed observations, inferences…

Abstract

Purpose

Deep learning (DL) is a new and relatively unexplored field that finds immense applications in many industries, especially ones that must make detailed observations, inferences and predictions based on extensive and scattered datasets. The purpose of this paper is to answer the following questions: (1) To what extent has DL penetrated the research being done in finance? (2) What areas of financial research have applications of DL, and what quality of work has been done in the niches? (3) What areas still need to be explored and have scope for future research?

Design/methodology/approach

This paper employs bibliometric analysis, a potent yet simple methodology with numerous applications in literature reviews. This paper focuses on citation analysis, author impacts, relevant and vital journals, co-citation analysis, bibliometric coupling and co-occurrence analysis. The authors collected 693 articles published in 2000–2022 from journals indexed in the Scopus database. Multiple software (VOSviewer, RStudio (biblioshiny) and Excel) were employed to analyze the data.

Findings

The findings reveal significant and renowned authors' impact in the field. The analysis indicated that the application of DL in finance has been on an upward track since 2017. The authors find four broad research areas (neural networks and stock market simulations; portfolio optimization and risk management; time series analysis and forecasting; high-frequency trading) with different degrees of intertwining and emerging research topics with the application of DL in finance. This article contributes to the literature by providing a systematic overview of the DL developments, trajectories, objectives and potential future research topics in finance.

Research limitations/implications

The findings of this paper act as a guide for literature review for anyone interested in doing research in the intersection of finance and DL. The article also explores multiple areas of research that have yet to be studied to a great extent and have abundant scope.

Originality/value

Very few studies have explored the applications of machine learning (ML), namely, DL in finance, which is a much more specialized subset of ML. The authors look at the problem from the aspect of different techniques in DL that have been used in finance. This is the first qualitative (content analysis) and quantitative (bibliometric analysis) assessment of current research on DL in finance.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 June 2023

Nurcan Sarikaya Basturk

The purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos.

Abstract

Purpose

The purpose of this paper is to present a deep ensemble neural network model for the detection of forest fires in aerial vehicle videos.

Design/methodology/approach

Presented deep ensemble models include four convolutional neural networks (CNNs): a faster region-based CNN (Faster R-CNN), a simple one-stage object detector (RetinaNet) and two different versions of the you only look once (Yolo) models. The presented method generates its output by fusing the outputs of these different deep learning (DL) models.

Findings

The presented fusing approach significantly improves the detection accuracy of fire incidents in the input data.

Research limitations/implications

The computational complexity of the proposed method which is based on combining four different DL models is relatively higher than that of using each of these models individually. On the other hand, however, the performance of the proposed approach is considerably higher than that of any of the four DL models.

Practical implications

The simulation results show that using an ensemble model is quite useful for the precise detection of forest fires in real time through aerial vehicle videos or images.

Social implications

By this method, forest fires can be detected more efficiently and precisely. Because forests are crucial breathing resources of the earth and a shelter for many living creatures, the social impact of the method can be considered to be very high.

Originality/value

This study fuses the outputs of different DL models into an ensemble model. Hence, the ensemble model provides more potent and beneficial results than any of the single models.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 1000