Search results

1 – 10 of 667
Article
Publication date: 12 April 2024

Youwei Li and Jian Qu

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous…

Abstract

Purpose

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous driving, the authors found that the trained neural network model performs poorly in untrained scenarios. Therefore, the authors proposed to improve the transfer efficiency of the model for new scenarios through transfer learning.

Design/methodology/approach

First, the authors achieved multi-task autonomous driving by training a model combining convolutional neural network and different structured long short-term memory (LSTM) layers. Second, the authors achieved fast transfer of neural network models in new scenarios by cross-model transfer learning. Finally, the authors combined data collection and data labeling to improve the efficiency of deep learning. Furthermore, the authors verified that the model has good robustness through light and shadow test.

Findings

This research achieved road tracking, real-time acceleration–deceleration, obstacle avoidance and left/right sign recognition. The model proposed by the authors (UniBiCLSTM) outperforms the existing models tested with model cars in terms of autonomous driving performance. Furthermore, the CMTL-UniBiCL-RL model trained by the authors through cross-model transfer learning improves the efficiency of model adaptation to new scenarios. Meanwhile, this research proposed an automatic data annotation method, which can save 1/4 of the time for deep learning.

Originality/value

This research provided novel solutions in the achievement of multi-task autonomous driving and neural network model scenario for transfer learning. The experiment was achieved on a single camera with an embedded chip and a scale model car, which is expected to simplify the hardware for autonomous driving.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 7 November 2022

T. Sree Lakshmi, M. Govindarajan and Asadi Srinivasulu

A proper understanding of malware characteristics is necessary to protect massive data generated because of the advances in Internet of Things (IoT), big data and the cloud…

Abstract

Purpose

A proper understanding of malware characteristics is necessary to protect massive data generated because of the advances in Internet of Things (IoT), big data and the cloud. Because of the encryption techniques used by the attackers, network security experts struggle to develop an efficient malware detection technique. Though few machine learning-based techniques are used by researchers for malware detection, large amounts of data must be processed and detection accuracy needs to be improved for efficient malware detection. Deep learning-based methods have gained significant momentum in recent years for the accurate detection of malware. The purpose of this paper is to create an efficient malware detection system for the IoT using Siamese deep neural networks.

Design/methodology/approach

In this work, a novel Siamese deep neural network system with an embedding vector is proposed. Siamese systems have generated significant interest because of their capacity to pick up a significant portion of the input. The proposed method is efficient in malware detection in the IoT because it learns from a few records to improve forecasts. The goal is to determine the evolution of malware similarity in emerging domains of technology.

Findings

The cloud platform is used to perform experiments on the Malimg data set. ResNet50 was pretrained as a component of the subsystem that established embedding. Each system reviews a set of input documents to determine whether they belong to the same family. The results of the experiments show that the proposed method outperforms existing techniques in terms of accuracy and efficiency.

Originality/value

The proposed work generates an embedding for each input. Each system examined a collection of data files to determine whether they belonged to the same family. Cosine proximity is also used to estimate the vector similarity in a high-dimensional area.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 25 April 2023

Nehal Elshaboury, Eslam Mohammed Abdelkader, Abobakr Al-Sakkaf and Ashutosh Bagchi

The energy efficiency of buildings has been emphasized along with the continual development in the building and construction sector that consumes a significant amount of energy…

95

Abstract

Purpose

The energy efficiency of buildings has been emphasized along with the continual development in the building and construction sector that consumes a significant amount of energy. To this end, the purpose of this research paper is to forecast energy consumption to improve energy resource planning and management.

Design/methodology/approach

This study proposes the application of the convolutional neural network (CNN) for estimating the electricity consumption in the Grey Nuns building in Canada. The performance of the proposed model is compared against that of long short-term memory (LSTM) and multilayer perceptron (MLP) neural networks. The models are trained and tested using monthly electricity consumption records (i.e. from May 2009 to December 2021) available from Concordia’s facility department. Statistical measures (e.g. determination coefficient [R2], root mean squared error [RMSE], mean absolute error [MAE] and mean absolute percentage error [MAPE]) are used to evaluate the outcomes of models.

Findings

The results reveal that the CNN model outperforms the other model predictions for 6 and 12 months ahead. It enhances the performance metrics reported by the LSTM and MLP models concerning the R2, RMSE, MAE and MAPE by more than 4%, 6%, 42% and 46%, respectively. Therefore, the proposed model uses the available data to predict the electricity consumption for 6 and 12 months ahead. In June and December 2022, the overall electricity consumption is estimated to be 195,312 kWh and 254,737 kWh, respectively.

Originality/value

This study discusses the development of an effective time-series model that can forecast future electricity consumption in a Canadian heritage building. Deep learning techniques are being used for the first time to anticipate the electricity consumption of the Grey Nuns building in Canada. Additionally, it evaluates the effectiveness of deep learning and machine learning methods for predicting electricity consumption using established performance indicators. Recognizing electricity consumption in buildings is beneficial for utility providers, facility managers and end users by improving energy and environmental efficiency.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 July 2023

Nehal Elshaboury, Eslam Mohammed Abdelkader and Abobakr Al-Sakkaf

Modern human society has continuous advancements that have a negative impact on the quality of the air. Daily transportation, industrial and residential operations churn up…

Abstract

Purpose

Modern human society has continuous advancements that have a negative impact on the quality of the air. Daily transportation, industrial and residential operations churn up dangerous contaminants in our surroundings. Addressing air pollution issues is critical for human health and ecosystems, particularly in developing countries such as Egypt. Excessive levels of pollutants have been linked to a variety of circulatory, respiratory and nervous illnesses. To this end, the purpose of this research paper is to forecast air pollution concentrations in Egypt based on time series analysis.

Design/methodology/approach

Deep learning models are leveraged to analyze air quality time series in the 6th of October City, Egypt. In this regard, convolutional neural network (CNN), long short-term memory network and multilayer perceptron neural network models are used to forecast the overall concentrations of sulfur dioxide (SO2) and particulate matter 10 µm in diameter (PM10). The models are trained and validated by using monthly data available from the Egyptian Environmental Affairs Agency between December 2014 and July 2020. The performance measures such as determination coefficient, root mean square error and mean absolute error are used to evaluate the outcomes of models.

Findings

The CNN model exhibits the best performance in terms of forecasting pollutant concentrations 3, 6, 9 and 12 months ahead. Finally, using data from December 2014 to July 2021, the CNN model is used to anticipate the pollutant concentrations 12 months ahead. In July 2022, the overall concentrations of SO2 and PM10 are expected to reach 10 and 127 µg/m3, respectively. The developed model could aid decision-makers, practitioners and local authorities in planning and implementing various interventions to mitigate their negative influences on the population and environment.

Originality/value

This research introduces the development of an efficient time-series model that can project the future concentrations of particulate and gaseous air pollutants in Egypt. This research study offers the first time application of deep learning models to forecast the air quality in Egypt. This research study examines the performance of machine learning approaches and deep learning techniques to forecast sulfur dioxide and particular matter concentrations using standard performance metrics.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 18 December 2023

Volodymyr Novykov, Christopher Bilson, Adrian Gepp, Geoff Harris and Bruce James Vanstone

Machine learning (ML), and deep learning in particular, is gaining traction across a myriad of real-life applications. Portfolio management is no exception. This paper provides a…

Abstract

Purpose

Machine learning (ML), and deep learning in particular, is gaining traction across a myriad of real-life applications. Portfolio management is no exception. This paper provides a systematic literature review of deep learning applications for portfolio management. The findings are likely to be valuable for industry practitioners and researchers alike, experimenting with novel portfolio management approaches and furthering investment management practice.

Design/methodology/approach

This review follows the guidance and methodology of Linnenluecke et al. (2020), Massaro et al. (2016) and Fisch and Block (2018) to first identify relevant literature based on an appropriately developed search phrase, filter the resultant set of publications and present descriptive and analytical findings of the research itself and its metadata.

Findings

The authors find a strong dominance of reinforcement learning algorithms applied to the field, given their through-time portfolio management capabilities. Other well-known deep learning models, such as convolutional neural network (CNN) and recurrent neural network (RNN) and its derivatives, have shown to be well-suited for time-series forecasting. Most recently, the number of papers published in the field has been increasing, potentially driven by computational advances, hardware accessibility and data availability. The review shows several promising applications and identifies future research opportunities, including better balance on the risk-reward spectrum, novel ways to reduce data dimensionality and pre-process the inputs, stronger focus on direct weights generation, novel deep learning architectures and consistent data choices.

Originality/value

Several systematic reviews have been conducted with a broader focus of ML applications in finance. However, to the best of the authors’ knowledge, this is the first review to focus on deep learning architectures and their applications in the investment portfolio management problem. The review also presents a novel universal taxonomy of models used.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 12 October 2023

R.L. Manogna and Aayush Anand

Deep learning (DL) is a new and relatively unexplored field that finds immense applications in many industries, especially ones that must make detailed observations, inferences…

Abstract

Purpose

Deep learning (DL) is a new and relatively unexplored field that finds immense applications in many industries, especially ones that must make detailed observations, inferences and predictions based on extensive and scattered datasets. The purpose of this paper is to answer the following questions: (1) To what extent has DL penetrated the research being done in finance? (2) What areas of financial research have applications of DL, and what quality of work has been done in the niches? (3) What areas still need to be explored and have scope for future research?

Design/methodology/approach

This paper employs bibliometric analysis, a potent yet simple methodology with numerous applications in literature reviews. This paper focuses on citation analysis, author impacts, relevant and vital journals, co-citation analysis, bibliometric coupling and co-occurrence analysis. The authors collected 693 articles published in 2000–2022 from journals indexed in the Scopus database. Multiple software (VOSviewer, RStudio (biblioshiny) and Excel) were employed to analyze the data.

Findings

The findings reveal significant and renowned authors' impact in the field. The analysis indicated that the application of DL in finance has been on an upward track since 2017. The authors find four broad research areas (neural networks and stock market simulations; portfolio optimization and risk management; time series analysis and forecasting; high-frequency trading) with different degrees of intertwining and emerging research topics with the application of DL in finance. This article contributes to the literature by providing a systematic overview of the DL developments, trajectories, objectives and potential future research topics in finance.

Research limitations/implications

The findings of this paper act as a guide for literature review for anyone interested in doing research in the intersection of finance and DL. The article also explores multiple areas of research that have yet to be studied to a great extent and have abundant scope.

Originality/value

Very few studies have explored the applications of machine learning (ML), namely, DL in finance, which is a much more specialized subset of ML. The authors look at the problem from the aspect of different techniques in DL that have been used in finance. This is the first qualitative (content analysis) and quantitative (bibliometric analysis) assessment of current research on DL in finance.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 August 2023

Gaurav Sarin, Pradeep Kumar and M. Mukund

Text classification is a widely accepted and adopted technique in organizations to mine and analyze unstructured and semi-structured data. With advancement of technological…

Abstract

Purpose

Text classification is a widely accepted and adopted technique in organizations to mine and analyze unstructured and semi-structured data. With advancement of technological computing, deep learning has become more popular among academicians and professionals to perform mining and analytical operations. In this work, the authors study the research carried out in field of text classification using deep learning techniques to identify gaps and opportunities for doing research.

Design/methodology/approach

The authors adopted bibliometric-based approach in conjunction with visualization techniques to uncover new insights and findings. The authors collected data of two decades from Scopus global database to perform this study. The authors discuss business applications of deep learning techniques for text classification.

Findings

The study provides overview of various publication sources in field of text classification and deep learning together. The study also presents list of prominent authors and their countries working in this field. The authors also presented list of most cited articles based on citations and country of research. Various visualization techniques such as word cloud, network diagram and thematic map were used to identify collaboration network.

Originality/value

The study performed in this paper helped to understand research gaps that is original contribution to body of literature. To best of the authors' knowledge, in-depth study in the field of text classification and deep learning has not been performed in detail. The study provides high value to scholars and professionals by providing them opportunities of research in this area.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 9 April 2024

Shola Usharani, R. Gayathri, Uday Surya Deveswar Reddy Kovvuri, Maddukuri Nivas, Abdul Quadir Md, Kong Fah Tee and Arun Kumar Sivaraman

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for…

Abstract

Purpose

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for inspectors. Image-based automatic inspection of cracks can be very effective when compared to human eye inspection. With the advancement in deep learning techniques, by utilizing these methods the authors can create automation of work in a particular sector of various industries.

Design/methodology/approach

In this study, an upgraded convolutional neural network-based crack detection method has been proposed. The dataset consists of 3,886 images which include cracked and non-cracked images. Further, these data have been split into training and validation data. To inspect the cracks more accurately, data augmentation was performed on the dataset, and regularization techniques have been utilized to reduce the overfitting problems. In this work, VGG19, Xception and Inception V3, along with Resnet50 V2 CNN architectures to train the data.

Findings

A comparison between the trained models has been performed and from the obtained results, Xception performs better than other algorithms with 99.54% test accuracy. The results show detecting cracked regions and firm non-cracked regions is very efficient by the Xception algorithm.

Originality/value

The proposed method can be way better back to an automatic inspection of cracks in buildings with different design patterns such as decorated historical monuments.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 667