Search results

1 – 10 of 36
Article
Publication date: 23 April 2024

Annarita Colamatteo, Marcello Sansone and Giuliano Iorio

This paper aims to examine the impact of the COVID-19 pandemic on the private label food products, specifically assessing the stability and changes in factors influencing…

Abstract

Purpose

This paper aims to examine the impact of the COVID-19 pandemic on the private label food products, specifically assessing the stability and changes in factors influencing purchasing decisions, and comparing pre-pandemic and post-pandemic datasets.

Design/methodology/approach

The study employs the Extra Tree Classifier method, a robust quantitative approach, to analyse data collected from questionnaires distributed among two distinct consumer samples. This methodological choice is explicitly adopted to provide a clear classification of factors influencing consumer preferences for private label products, surpassing conventional qualitative methods.

Findings

Despite the profound disruptions caused by the COVID-19 pandemic, this research underscores the persistent hierarchy of factors shaping consumer choices in the private label food market, showing an overall stability in consumer behaviour. At the same time, the analysis of individual variables highlights the positive increase in those related to product quality, health, taste, and communication.

Research limitations/implications

The use of online surveys for data collection may introduce a self-selection bias, and the non-probabilistic sampling method could limit the generalizability of the results.

Practical implications

Practical implications suggest that managers in the private label industry should prioritize enhancing quality control, ensuring effective communication, and dynamically adapting strategies to meet evolving consumer preferences, with a particular emphasis on quality and health attributes.

Originality/value

This study contributes to the existing body of literature by providing insights into the profound transformations induced by the COVID-19 pandemic on consumer behaviour, specifically in relation to their preferences for private label food products.

Details

British Food Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0007-070X

Keywords

Open Access
Article
Publication date: 20 November 2023

Devesh Singh

This study aims to examine foreign direct investment (FDI) factors and develops a rational framework for FDI inflow in Western European countries such as France, Germany, the…

Abstract

Purpose

This study aims to examine foreign direct investment (FDI) factors and develops a rational framework for FDI inflow in Western European countries such as France, Germany, the Netherlands, Switzerland, Belgium and Austria.

Design/methodology/approach

Data for this study were collected from the World development indicators (WDI) database from 1995 to 2018. Factors such as economic growth, pollution, trade, domestic capital investment, gross value-added and the financial stability of the country that influence FDI decisions were selected through empirical literature. A framework was developed using interpretable machine learning (IML), decision trees and three-stage least squares simultaneous equation methods for FDI inflow in Western Europe.

Findings

The findings of this study show that there is a difference between the most important and trusted factors for FDI inflow. Additionally, this study shows that machine learning (ML) models can perform better than conventional linear regression models.

Research limitations/implications

This research has several limitations. Ideally, classification accuracies should be higher, and the current scope of this research is limited to examining the performance of FDI determinants within Western Europe.

Practical implications

Through this framework, the national government can understand how investors make their capital allocation decisions in their country. The framework developed in this study can help policymakers better understand the rationality of FDI inflows.

Originality/value

An IML framework has not been developed in prior studies to analyze FDI inflows. Additionally, the author demonstrates the applicability of the IML framework for estimating FDI inflows in Western Europe.

Details

Journal of Economics, Finance and Administrative Science, vol. 29 no. 57
Type: Research Article
ISSN: 2077-1886

Keywords

Article
Publication date: 17 April 2024

Jahanzaib Alvi and Imtiaz Arif

The crux of this paper is to unveil efficient features and practical tools that can predict credit default.

Abstract

Purpose

The crux of this paper is to unveil efficient features and practical tools that can predict credit default.

Design/methodology/approach

Annual data of non-financial listed companies were taken from 2000 to 2020, along with 71 financial ratios. The dataset was bifurcated into three panels with three default assumptions. Logistic regression (LR) and k-nearest neighbor (KNN) binary classification algorithms were used to estimate credit default in this research.

Findings

The study’s findings revealed that features used in Model 3 (Case 3) were the efficient and best features comparatively. Results also showcased that KNN exposed higher accuracy than LR, which proves the supremacy of KNN on LR.

Research limitations/implications

Using only two classifiers limits this research for a comprehensive comparison of results; this research was based on only financial data, which exhibits a sizeable room for including non-financial parameters in default estimation. Both limitations may be a direction for future research in this domain.

Originality/value

This study introduces efficient features and tools for credit default prediction using financial data, demonstrating KNN’s superior accuracy over LR and suggesting future research directions.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 March 2023

Lu An, Yan Shen, Gang Li and Chuanming Yu

Multiple topics often exist on social media platforms that compete for users' attention. To explore how users’ attention transfers in the context of multitopic competition can…

Abstract

Purpose

Multiple topics often exist on social media platforms that compete for users' attention. To explore how users’ attention transfers in the context of multitopic competition can help us understand the development pattern of the public attention.

Design/methodology/approach

This study proposes the prediction model for the attention transfer behavior of social media users in the context of multitopic competition and reveals the important influencing factors of users' attention transfer. Microblogging features are selected from the dimensions of users, time, topics and competitiveness. The microblogging posts on eight topic categories from Sina Weibo, the most popular microblogging platform in China, are used for empirical analysis. A novel indicator named transfer tendency of a feature value is proposed to identify the important factors for attention transfer.

Findings

The accuracy of the prediction model based on Light GBM reaches 91%. It is found that user features are the most important for the attention transfer of microblogging users among all the features. The conditions of attention transfer in all aspects are also revealed.

Originality/value

The findings can help governments and enterprises understand the competition mechanism among multiple topics and improve their ability to cope with public opinions in the complex environment.

Details

Aslib Journal of Information Management, vol. 76 no. 3
Type: Research Article
ISSN: 2050-3806

Keywords

Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1094

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 28 November 2023

Shiqin Zeng, Frederick Chung and Baabak Ashuri

Completing Right-of-Way (ROW) acquisition process on schedule is critical to avoid delays and cost overruns on transportation projects. However, transportation agencies face…

Abstract

Purpose

Completing Right-of-Way (ROW) acquisition process on schedule is critical to avoid delays and cost overruns on transportation projects. However, transportation agencies face challenges in accurately forecasting ROW acquisition timelines in the early stage of projects due to complex nature of acquisition process and limited design information. There is a need of improving accuracy of estimating ROW acquisition duration during the early phase of project development and quantitatively identifying risk factors affecting the duration.

Design/methodology/approach

The quantitative research methodology used to develop the forecasting model includes an ensemble algorithm based on decision tree and adaptive boosting techniques. A dataset of Georgia Department of Transportation projects held from 2010 to 2019 is utilized to demonstrate building the forecasting model. Furthermore, sensitivity analysis is performed to identify critical drivers of ROW acquisition durations.

Findings

The forecasting model developed in this research achieves a high accuracy to predict ROW durations by explaining 74% of the variance in ROW acquisition durations using project features, which is outperforming single regression tree, multiple linear regression and support vector machine. Moreover, number of parcels, average cost estimation per parcel, length of projects, number of condemnations, number of relocations and type of work are found to be influential factors as drivers of ROW acquisition duration.

Originality/value

This research contributes to the state of knowledge in estimating ROW acquisition timeline through (1) developing a novel machine learning model to accurately estimate ROW acquisition timelines, and (2) identifying drivers (i.e. risk factors) of ROW acquisition durations. The findings of this research will provide transportation agencies with insights on how to improve practices in scheduling ROW acquisition process.

Details

Built Environment Project and Asset Management, vol. 14 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

Open Access
Article
Publication date: 28 November 2022

Ruchi Kejriwal, Monika Garg and Gaurav Sarin

Stock market has always been lucrative for various investors. But, because of its speculative nature, it is difficult to predict the price movement. Investors have been using both…

1020

Abstract

Purpose

Stock market has always been lucrative for various investors. But, because of its speculative nature, it is difficult to predict the price movement. Investors have been using both fundamental and technical analysis to predict the prices. Fundamental analysis helps to study structured data of the company. Technical analysis helps to study price trends, and with the increasing and easy availability of unstructured data have made it important to study the market sentiment. Market sentiment has a major impact on the prices in short run. Hence, the purpose is to understand the market sentiment timely and effectively.

Design/methodology/approach

The research includes text mining and then creating various models for classification. The accuracy of these models is checked using confusion matrix.

Findings

Out of the six machine learning techniques used to create the classification model, kernel support vector machine gave the highest accuracy of 68%. This model can be now used to analyse the tweets, news and various other unstructured data to predict the price movement.

Originality/value

This study will help investors classify a news or a tweet into “positive”, “negative” or “neutral” quickly and determine the stock price trends.

Details

Vilakshan - XIMB Journal of Management, vol. 21 no. 1
Type: Research Article
ISSN: 0973-1954

Keywords

Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 April 2024

Rita Sleiman, Quoc-Thông Nguyen, Sandra Lacaze, Kim-Phuc Tran and Sébastien Thomassey

We propose a machine learning based methodology to deal with data collected from a mobile application asking users their opinion regarding fashion products. Based on different…

Abstract

Purpose

We propose a machine learning based methodology to deal with data collected from a mobile application asking users their opinion regarding fashion products. Based on different machine learning techniques, the proposed approach relies on the data value chain principle to enrich data into knowledge, insights and learning experience.

Design/methodology/approach

Online interaction and the usage of social media have dramatically altered both consumers’ behaviors and business practices. Companies invest in social media platforms and digital marketing in order to increase their brand awareness and boost their sales. Especially for fashion retailers, understanding consumers’ behavior before launching a new collection is crucial to reduce overstock situations. In this study, we aim at providing retailers better understand consumers’ different assessments of newly introduced products.

Findings

By creating new product-related and user-related attributes, the proposed prediction model attends an average of 70.15% accuracy when evaluating the potential success of new future products during the design process of the collection. Results showed that by harnessing artificial intelligence techniques, along with social media data and mobile apps, new ways of interacting with clients and understanding their preferences are established.

Practical implications

From a practical point of view, the proposed approach helps businesses better target their marketing campaigns, localize their potential clients and adjust manufactured quantities.

Originality/value

The originality of the proposed approach lies in (1) the implementation of the data value chain principle to enhance the information of raw data collected from mobile apps and improve the prediction model performances, and (2) the combination consumer and product attributes to provide an accurate prediction of new fashion, products.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 February 2024

Saba Sareminia, Zahra Ghayoumian and Fatemeh Haghighat

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring…

Abstract

Purpose

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring high-quality products at a reduced cost has become a significant concern for countries. The primary objective of this research is to leverage data mining and data intelligence techniques to enhance and refine the production process of texturized yarn by developing an intelligent operating guide that enables the adjustment of production process parameters in the texturized yarn manufacturing process, based on the specifications of raw materials.

Design/methodology/approach

This research undertook a systematic literature review to explore the various factors that influence yarn quality. Data mining techniques, including deep learning, K-nearest neighbor (KNN), decision tree, Naïve Bayes, support vector machine and VOTE, were employed to identify the most crucial factors. Subsequently, an executive and dynamic guide was developed utilizing data intelligence tools such as Power BI (Business Intelligence). The proposed model was then applied to the production process of a textile company in Iran 2020 to 2021.

Findings

The results of this research highlight that the production process parameters exert a more significant influence on texturized yarn quality than the characteristics of raw materials. The executive production guide was designed by selecting the optimal combination of production process parameters, namely draw ratio, D/Y and primary temperature, with the incorporation of limiting indexes derived from the raw material characteristics to predict tenacity and elongation.

Originality/value

This paper contributes by introducing a novel method for creating a dynamic guide. An intelligent and dynamic guide for tenacity and elongation in texturized yarn production was proposed, boasting an approximate accuracy rate of 80%. This developed guide is dynamic and seamlessly integrated with the production database. It undergoes regular updates every three months, incorporating the selected features of the process and raw materials, their respective thresholds, and the predicted levels of elongation and tenacity.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 36