Search results

1 – 10 of 316
Article
Publication date: 10 December 2019

Tie-Lin Chen, Wenbin Tao, Wenjun Zhu and Mozhen Zhou

Near-surface mounted (NSM) fiber-reinforced polymer (FRP) rod is extensively applied in reinforced concrete (RC) structures. The mechanical performances of NSM FRP-strengthened RC…

Abstract

Purpose

Near-surface mounted (NSM) fiber-reinforced polymer (FRP) rod is extensively applied in reinforced concrete (RC) structures. The mechanical performances of NSM FRP-strengthened RC structures depend on the bond behavior between NSM reinforcement and concrete. This behavior is typically studied by performing pull-out tests; however, the failure behavior, which is crucial to the local debonding process, is not yet sufficiently understood.

Design/methodology/approach

In this study, a three-dimensional meso-scale finite element method considering the cohesion and adhesion failures is presented to model the debonding failure process in pull-out tests of NSM FRP rod in concrete. The smeared crack model is used to capture the cohesion failures in the adhesive or concrete. The interfacial constitutive model is applied to simulate the adhesion failures on the FRP-adhesive and concrete-adhesive contact interfaces.

Findings

The present method is first validated by two simple examples and then applied to a practical NSM FRP system. This work studied in detail the debonding process, the bond failure types, the location of peak bond stress, the transmitting deformation in adhesive and the morphology of contact zone. The developed method provides a practical and convenient tool applicable for further investigations on the debonding mechanism for the NSM FRP rod in concrete.

Originality/value

A three-dimensional meso-scale finite element method considering the cohesion and adhesion failures is presented to model the debonding failure in NSM FRP-strengthened RC structures. The smeared crack model and the interfacial constitutive model are introduced to develop a convenient approach to analyze the failures in adhesive, concrete and related interfaces. The developed numerical method is applicable for studying the debonding process, the bond failure types, the location of peak bond stress, the transmitting deformation in adhesive and the morphology of contact zone in detail.

Details

Engineering Computations, vol. 37 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2011

Valentina Salomoni, Gianluca Mazzucco, Carlo Pellegrino and Carmelo Majorana

The purpose of this paper is to investigate the bond behaviour between fiber reinforced polymer (FRP) sheets and concrete elements, starting from available experimental evidences…

1589

Abstract

Purpose

The purpose of this paper is to investigate the bond behaviour between fiber reinforced polymer (FRP) sheets and concrete elements, starting from available experimental evidences, through a calibrated and upgraded 3D mathematical‐numerical model.

Design/methodology/approach

The complex mechanism of debonding/peeling failure of FRP reinforcement is studied within the context of damage mechanics to appropriately catch transversal effects and developing a more realistic and comprehensive study of the delamination process. The FE ABAQUS© code has been supplemented with a numerical procedure accounting for Mazars's damage law inside the contact algorithm.

Findings

It has been shown that such an approach is able to catch the delamination evolution during loading processes as well.

Originality/value

A Drucker‐Prager constitutive law is adopted for concrete whereas FRP elements are assumed to behave in a linear‐elastic manner, possibly undertaking large strains/displacements. Surface‐to‐surface contact conditions have been applied between FRP and adjacent concrete, including the enhancement given by the strain‐softening law according to Mazars' damage model. The procedure has been introduced to describe the coupled behaviour between concrete, FRP and adhesive resulting in specific bonding‐debonding features under different load levels.

Details

Engineering Computations, vol. 28 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2019

Cheng Xu, Z.W. Zhong and W.K. Choi

The fan-out wafer level package (FOWLP) becomes more and more attractive and popular because of its flexibility to integrate diverse devices into a very small form factor. The…

Abstract

Purpose

The fan-out wafer level package (FOWLP) becomes more and more attractive and popular because of its flexibility to integrate diverse devices into a very small form factor. The strength of ultrathin FOWLP is low, and the low package strength often leads to crack issues. This paper aims to study the strength of thin FOWLP because the low package strength may lead to the reliability issue of package crack.

Design/methodology/approach

This paper uses the experimental method (three-point bending test) and finite element method (ANSYS simulation software) to evaluate the FOWLP strength. Two theoretical models of FOWLP strength are proposed. These two models are based on the location of FOWLP initial fracture point.

Findings

The results show that the backside protection tape does not have the ability to enhance the FOWLP strength, and the strength of over-molded structure FOWLP is superior to that of other structure FOWLPs with the same thickness level.

Originality/value

There is ample research about the silicon strength and silicon die strength. However, there is little research about the package level strength and no research about the FOWLP strength. The FOWLP is made up of various materials. The effect of individual component and external environment on the FOWLP strength is uncertain. Therefore, the study of strength behavior of FOWLP is significant.

Details

Microelectronics International, vol. 36 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 August 2019

Tao Wang, Zhanli Liu, Yue Gao, Xuan Ye and Zhuo Zhuang

The interaction between hydraulic fracture (HF) and natural fracture (NF) in naturally fractured rocks is critical for hydraulic fracturing. This paper aims to focus on…

170

Abstract

Purpose

The interaction between hydraulic fracture (HF) and natural fracture (NF) in naturally fractured rocks is critical for hydraulic fracturing. This paper aims to focus on investigating the development of tensile and shear debonding zone on the NF caused by the stresses produced by HF, and the influence of NF’s debonding behavior on the interaction between HF and NF.

Design/methodology/approach

Theoretically, tensile and shear debonding modes of NF are considered, two dimensionless parameters are proposed to characterize the difficulty of tensile and shear failure of NF, respectively. Numerically, a finite element model combining the extended finite element method and cohesive zone method (CZM) is proposed to study NF’s debonding behavior and its influence on the interaction between HF and NF.

Findings

Both theoretical analysis and numerical simulation show the existence of two debonding modes. The numerical results also show that the HF can cross, offset or propagate along the NFs depending on the parameters’ value, resulting in different fracture network and stimulated reservoir volume. When they are large, the NF’s debonding area is small, HF tends to cross the NF and the fracture network is simple; when they are small, the NF’s debonding area is large, HF will propagate along the NF. In addition, HF is easier to propagate along with NF under tensile debonding mode while it is easier to pass through NF under shear debonding mode.

Originality/value

The theoretical and numerical considerations are taken into account in the influence of the debonding of NFs on the interaction between HFs and NFs and the influence on the formation of the fracture network.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 August 2023

Hong Yuan, Jun Han, Huaqiang Lu, Junhui Li and Lan Zeng

Due to its inexpensive production costs, low stress concentration and maintenance-friendliness, the adhesive bonded pipe joint is frequently utilized for pipe connection. However…

Abstract

Purpose

Due to its inexpensive production costs, low stress concentration and maintenance-friendliness, the adhesive bonded pipe joint is frequently utilized for pipe connection. However, further theoretical analysis is needed to understand the debonding failure mechanism of such bonded pipe joints under axial tension.

Design/methodology/approach

In this study, based on the bi-linear cohesive zone model, the integrated closed-form solutions were derived by considering the axial stiffness ratio and failure stage to determine the relative interfacial slip, interfacial shear stress and relationship of tension–displacement in the bonded pipe joint.

Findings

Additionally, solutions for the critical bonded length and the ultimate load capacity were put forth. Besides, the numerical study was conducted to verify the theoretical solutions regarding the load–displacement relationship. The interfacial shear stress distribution at different failure stages was presented to understand the interfacial shear stress transmission and debonding process. The effect of bonded length on the ultimate load and ductility of pipe joints was also discussed.

Originality/value

The findings in this study can give a reference for the design of bonded pipe joints in their actual engineering applications.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 September 2018

Niraj Kumar Jha and Udo Nackenhorst

The purpose of this paper is to develop a progressive damage framework to predict the fatigue life of cord-reinforced rubber composite under cyclic loadings. Special attention has…

Abstract

Purpose

The purpose of this paper is to develop a progressive damage framework to predict the fatigue life of cord-reinforced rubber composite under cyclic loadings. Special attention has been paid to failure mechanisms, like cord–rubber interfacial debonding, and rubber matrix damage.

Design/methodology/approach

The constitutive modeling is based on the continuum damage mechanics (CDMs) and the thermodynamics of irreversible process. The damage in rubber is described by an istropic law, whereas elasto-plastic continuum model has been proposed for cord–rubber interphase layer. The numerical framework is implemented into commercial finite element code Abaqus/Standard via user subroutine (UMAT).

Findings

One of the most important findings obtained from reviewing various techniques is that meso-level fatigue damage modeling based on developed framework can simulate competitive damage scenarios, e.g. debonding, delamination or matrix failure.

Originality/value

A systematic framework for predicting failure in cord-reinforced rubber composite is formulated within the context of CDMs that can also be applied for industrial components, such as tires and airsprings.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 November 2013

Jeremy Doucet, Xiang Zhang and Philip Irving

This paper aims to present the implementation of a finite element (FE) model used to establish crack and delamination development in a Glare reinforced aluminium plate under…

Abstract

Purpose

This paper aims to present the implementation of a finite element (FE) model used to establish crack and delamination development in a Glare reinforced aluminium plate under fatigue loading. This model predicts the behaviour of bonded GLARE straps used as crack retarders for life extension of aircraft structures. In particular, it takes into account the interaction that exists between the substrate crack and the delamination crack at the interface with the reinforcement.

Design/methodology/approach

In this work, a 3D FE model with three-layer continuum shell elements has been developed to calculate changes in substrate stress intensity and in fatigue crack growth (FCG) rate produced by bonded strap reinforcement. Both circular and elliptical strap delamination geometries were incorporated into the model. Calculated stress intensity factors (SIFs) were used together with measured FCG data for substrate material to predict FCG rates for the strapped condition.

Findings

The model predicted a decrease in the SIF and a retardation of FCG rates. The SIF was predicted to vary through the thickness of the substrate due to the phenomenon of secondary bending and also the bridging effect caused by the presence of the strap. The influence of delamination shape and size on substrate crack stress intensity and delamination strain energy release rate has been calculated.

Originality/value

This research aims at developing modelling techniques that could be used when studying larger reinforced structures found in aircraft.

Details

International Journal of Structural Integrity, vol. 4 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 June 2017

Hang Ye, Abhishek Venketeswaran, Sonjoy Das and Chi Zhou

One of the major concerns of the constrained-surface stereolithography (SLA) process is that the built-up part may break because of the force resulting from the pulling-up process

656

Abstract

Purpose

One of the major concerns of the constrained-surface stereolithography (SLA) process is that the built-up part may break because of the force resulting from the pulling-up process. This resultant force may become significant if the interface mechanism between the two contact surfaces (i.e. newly cured layer and the bottom of the resin vat) produces a strong bonding between them. The purpose of this paper is to characterize the separation process between the cured part and the resin vat by adopting an appropriate and simple mechanics-based model that can be used to probe the pulling-up process.

Design/methodology/approach

In this paper, the time-histories of the pulling-up forces are measured using FlexiForce® force sensors. The experimental data are analyzed and used to estimate the constitutive parameters of the separation mechanism. Here, the separation mechanism is modeled based on the concept of cohesive zone model (CZM) that is well-studied in the field of fracture mechanics. By using the experimentally measured pulling-up force, this paper proposes a very efficient inverse technique to estimate the constitutive parameters for the CZM. The constitutive laws for the CZM facilitate in relating the separation force at the interface between the cured part and the resin vat in terms of the pulling-up velocity. Unlike work proposed earlier, computationally expensive full-scale finite element runs are not essential in the current work while estimating the required parameters of the constitutive laws. Instead, mechanics-based computationally efficient surrogate model is proposed to readily estimate these constitutive parameters.

Findings

Two constitutive laws are compared on the basis of their predictions of the separation force profile. Excellent match is obtained between the measured and the predicted separation force profiles.

Originality/value

This paper selects a suitable mechanics-based model that can characterize the separation process and proposes a computationally efficient scheme to estimate the required constitutive parameters. The proposed scheme can be used to reliably predict the separation force for the constrained-surface SLA process, leading to improved productivity and reliability of the SLA processes in fabricating the built-up parts.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2004

Dwayne D. Tannant and Caigen Wang

Simple discrete element models using PFC2D models with bonded assemblies of particles were used to numerically simulate direct tension and block punching tests on thin spray‐on…

1616

Abstract

Simple discrete element models using PFC2D models with bonded assemblies of particles were used to numerically simulate direct tension and block punching tests on thin spray‐on tunnel liner materials to gain insight about the liner support mechanisms. PFC2D input parameters were calibrated such that the rupture load and elongation at rupture were similar to the laboratory test data. The calibrated model of the liner material was then used to simulate a liner around a highly stressed tunnel in rock where stresses caused extensive fracturing near the top of the tunnel. The effect of the liner was analysed by modelling the tunnel with and without the liner and showed that the liner had minimal impact on fracture propagation in the rock because of the liner's highly deformable nature. However, the liner was able to retain the fractured rock in place.

Details

Engineering Computations, vol. 21 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 August 2007

Gordon Geißler, Michael Kaliske, Michael Nase and Wolfgang Grellmann

The purpose of this paper is to evaluate current simulation capabilities for thin film delamination on the basis of real test data as well as a contribution to its extension in…

1505

Abstract

Purpose

The purpose of this paper is to evaluate current simulation capabilities for thin film delamination on the basis of real test data as well as a contribution to its extension in order to partly substitute experimental investigations.

Design/methodology/approach

The proposed model consists of a formulation that describes the behaviour of the bulk material and an approach that introduces the film's delamination capability. An implicit finite element framework with a cohesive zone implementation is used and described in detail. The numerical results on the basis of the a priori identified material parameters are related to the experimental work. In order to capture the obvious peel speed dependency of these delamination processes, a viscoelastic cohesive formulation is introduced and compared with a pure separation rate dependent cohesive material in the second part of this contribution.

Findings

The performed numerical simulations show a good approximation of the experimental peel process. The extension in order to take time‐dependent effects into account is required for the simulation of such problems. In contrast with the pure rate‐dependent model, the presented consistent formulation of the cohesive part is able to cover the whole range of observed material phenomena.

Research limitations/implications

Owing to the absence of suitable experimental single mode investigations of the sealed layer, the used cohesive material parameters are identified in relation to the pre‐existing experimental results. Furthermore, the resultant peel force has a constant value due to the assumed homogeneous cohesive material and therefore gives only a mean approximation of the experimental values at this stage of the investigation.

Originality/value

The numerical representation of such a thin film delamination process in relation to real experimental results shows the additional capabilities and the usability of the implicit finite element method with a cohesive zone implementation in a clear and illustrative way. The first proposed cohesive extension based on a rheological model shows the capability to cover the full range of time‐dependent interface layer behaviour.

Details

Engineering Computations, vol. 24 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 316