Search results

1 – 10 of over 1000
Article
Publication date: 31 December 2006

Tassos Dimitriou and Ioannis Krontiris

Nodes in sensor networks do not have enough topology information to make efficient routing decisions. To relay messages through intermediate sensors, geographic routing has been…

Abstract

Nodes in sensor networks do not have enough topology information to make efficient routing decisions. To relay messages through intermediate sensors, geographic routing has been proposed as such a solution. Its greedy nature, however, makes routing inefficient especially in the presence of topology voids or holes. In this paper we present GRAViTy (Geographic Routing Around Voids In any TopologY of sensor networks), a simple greedy forwarding algorithm that combines compass routing along with a mechanism that allows packets to explore the area around voids and bypass them without significant communication overhead. Using extended simulation results we show that our mechanism outperforms the right‐hand rule for bypassing voids and that the resulting paths found well approximate the corresponding shortest paths. GRAViTy uses a cross‐layered approach to improve routing paths for subsequent packets based on experience gained by former routing decisions. Furthermore, our protocol responds to topology changes, i.e. failure of nodes, and efficiently adjusts routing paths towards the destination.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 17 July 2019

Prasad A.Y. and Balakrishna Rayanki

In the present networking scenarios, MANETs mainly focus on reducing the consumed power of battery-operated devices. The transmission of huge data in MANETs is responsible for…

Abstract

Purpose

In the present networking scenarios, MANETs mainly focus on reducing the consumed power of battery-operated devices. The transmission of huge data in MANETs is responsible for greater energy usage, thereby affecting the parameter metrics network performance, throughput, packet overhead, energy consumption in addition to end-to-end delay. The effective parameter metric measures are implemented and made to enhance the network lifetime and energy efficiency. The transmission of data for at any node should be more efficient and also the battery of sensor node battery usage should be proficiently applied to increase the network lifetime. The paper aims to discuss these issues.

Design/methodology/approach

In this research work for the MANETs, the improvement of energy-efficient algorithms in MANETs is necessary. The main aim of this research is to develop an efficient and accurate routing protocol for MANET that consumes less energy, with an increased network lifetime.

Findings

In this paper, the author has made an attempt to improve the genetic algorithm with simulated annealing (GASA) for MANET to minimize the energy consumption of 0.851 percent and to enhance the network lifetime of 61.35 percent.

Originality/value

In this paper, the author has made an attempt to improve the GASA for MANET to minimize the energy consumption of 0.851 percent and to enhance the network lifetime of 61.35 percent.

Details

International Journal of Intelligent Unmanned Systems, vol. 8 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 7 March 2018

Natasha Ramluckun and Vandana Bassoo

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy…

Abstract

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy efficiency has been a critical factor due to the energy resource impediment of batteries in sensor nodes. The proposed routing algorithm therefore aims at extending lifetime of sensors by enhancing load distribution in the network. The scheme is based on the chain-based routing technique of the PEGASIS (Power Energy GAthering in Sensor Information Systems) protocol and uses Ant Colony Optimisation to obtain the optimal chain. The contribution of the proposed work is the integration of the clustering method to PEGASIS with Ant Colony Optimisation to reduce redundancy of data, neighbour nodes distance and transmission delay associated with long links, and the employment an appropriate cluster head selection method. Simulation results indicates proposed method’s superiority in terms of residual energy along with considerable improvement regarding network lifetime, and significant reduction in delay when compared with existing PEGASIS protocol and optimised PEG-ACO chain respectively.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 5 September 2016

Chirihane Gherbi, Zibouda Aliouat and Mohamed Benmohammed

Load balancing is an effective enhancement to the proposed routing protocol, and the basic idea is to share traffic load among cluster members to reduce the dropping probability…

Abstract

Purpose

Load balancing is an effective enhancement to the proposed routing protocol, and the basic idea is to share traffic load among cluster members to reduce the dropping probability due to queue overflow at some nodes. This paper aims to propose a novel hierarchical approach called distributed energy efficient adaptive clustering protocol (DEACP) with data gathering, load-balancing and self-adaptation for wireless sensor network (WSN). The authors have proposed DEACP approach to reach the following objectives: reduce the overall network energy consumption, balance the energy consumption among the sensors and extend the lifetime of the network, the clustering must be completely distributed, the clustering should be efficient in complexity of message and time, the cluster-heads should be well-distributed across the network, the load balancing should be done well and the clustered WSN should be fully connected. Simulations show that DEACP clusters have good performance characteristics.

Design/methodology/approach

A WSN consists of large number of wireless capable sensor devices working collaboratively to achieve a common objective. One or more sinks [or base stations (BS)] which collect data from all sensor devices. These sinks are the interface through which the WSN interacts with the outside world. Challenges in WSN arise in implementation of several services, and there are so many controllable and uncontrollable parameters (Chirihane, 2015) by which the implementation of WSN is affected, e.g. energy conservation. Clustering is an efficient way to reduce energy consumption and extend the life time of the network, by performing data aggregation and fusion to reduce the number of transmitted messages to the BS (Chirihane, 2015). Nodes of the network are organized into the clusters to process and forwarding the information, while lower energy nodes can be used to sense the target, and DEACP makes no assumptions on the size and the density of the network. The number of levels depends on the cluster range and the minimum energy path to the head. The proposed protocol reduces the number of dead nodes and the energy consumption, to extend the network lifetime. The rest of the paper is organized as follows: An overview of related work is given in Section 2. In Section 3, the authors propose an energy efficient level-based clustering routing protocol (DEACP). Simulations and results of experiments are discussed in Section 4. In Section 5, the authors conclude the work presented in this paper and the scope of further extension of this work.

Originality/value

The authors have proposed the DEACP approach to reach the following objectives: reduce the overall network energy consumption, balance the energy consumption among the sensors and extend the lifetime of the network, the clustering must be completely distributed, the clustering should be efficient in complexity of message and time, the cluster-heads should be well-distributed across the network, the load balancing should be done well, the clustered WSN should be fully connected. Simulations show that DEACP clusters have good performance characteristics.

Details

International Journal of Pervasive Computing and Communications, vol. 12 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 November 2005

Qinglan Li, Jonathan Beaver, Ahmed Amer, Panos K. Chrysanthis, Alexandros Labrinidis and Ganesh Santhanakrishnan

Wireless sensor networks are expected to be an integral part of any pervasive computing environment. This implies an ever‐increasing need for efficient energy and resource…

Abstract

Wireless sensor networks are expected to be an integral part of any pervasive computing environment. This implies an ever‐increasing need for efficient energy and resource management of both the sensor nodes, as well as the overall sensor network, in order to meet the expected quality of data and service requirements. There have been numerous studies that have looked at the routing of data in sensor networks with the sole intention of reducing communication power consumption. However, there has been comparatively little prior art in the area of multi‐criteria based routing that exploit both the semantics of queries and the state of sensor nodes to improve network service longevity. In this paper, we look at routing in sensor networks from this perspective and propose an adaptive multi‐criteria routing protocol. Our algorithm offers automated reconfiguration of the routing tree as demanded by variations in the network state to meet application service requirements. Our experimental results show that our approach consistently outperforms, in terms of Network Lifetime and Coverage, the leading semantic‐based routing algorithm which reconfigures the routing tree at fixed periods.

Details

International Journal of Pervasive Computing and Communications, vol. 1 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 15 June 2015

Muhammad Yousaf Khan, Saad B. Qaisar, Muhammad Naeem, Awais Aslam, Saleem Shahid and Ijaz Naqvi

The study aims at providing a reliable system of real-time monitoring for underground mine and tunnels which detects any structural change in the network and reconfigures it for…

Abstract

Purpose

The study aims at providing a reliable system of real-time monitoring for underground mine and tunnels which detects any structural change in the network and reconfigures it for resuming the data delivery process. In high stress environments, e.g. underground mines and tunnels, real-time activity monitoring is an emerging issue. Wireless sensor networks (WSNs) play a key role in ensuring the safety of people working in underground mines and tunnels. WSN not only provide real-time monitoring of underground environment but also detects any structural change in the network itself.

Design/methodology/approach

In this paper, results of empirical implementation of a re-configurable WSN, capable of self-healing approach, reconfigure the network connectivity upon failure or addition of nodes in the system. An open-source radio-frequency identification standard for WSN, named as DASH7, is used for practical implementation. The proposed system is capable of determining cluster breakage by sudden disruptions caused by roof falls, explosions and node failures, sensor coverage hole, node re-addition to the network and distress priority signal generation by the miner.

Findings

The proposed platform contributes to re-attain network state for establishing a communication link with fusion center in terms of: instant and accurate detection of collapse holes, acceptable error rate, time to re-attain network state, rapid distress signal propagation and low deployment cost. This platform is deployed in four different environments of anechoic chamber, hallway, outdoor and underground mine environment, to test the aforementioned scenarios using DASH7-compatible Bitsense Sensor Motes operating at 433 MHz. The effectiveness of the proposed approach has been experimentally validated for the single and multiple adjacent and disjoint node failures in all the four environments.

Originality/value

The number of monitoring systems was implemented for safety assurance in high stress environments before, but the novelty of our platform is long range, cost effectiveness, quick response to any structural change in the network, rapid and accurate data delivery using WSN operated on DASH7 protocol stack.

Details

Sensor Review, vol. 35 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 August 2014

Amjad Abu-Baker, Hong Huang and Satyajayant Misra

The purpose of this paper is to investigate conditional and unconditional lifetime sequence of wireless sensor networks (WSN) that have many important practical applications. A…

Abstract

Purpose

The purpose of this paper is to investigate conditional and unconditional lifetime sequence of wireless sensor networks (WSN) that have many important practical applications. A significant limitation for WSN is its short lifetime due to the limited capacity of the battery. Renewable energy can significantly extend the lifetime of WSN. In this paper, we investigate the whole sequence of lifetimes of every sensor in WSN, as different application scenarios have different requirement on how many sensors can die until the WSN is no longer functional.

Design/methodology/approach

Linear programming formulation was used to investigate both the conditional and unconditional lifetime sequence of WSN. The lifetime sequences of WSN without and with differ levels of solar power were studied.

Findings

This investigation of lifetime sequences discovered three interesting phenomena: the sensors that die first are on the peripheral of the network, rather close to the base station; multiple sensors tend to die simultaneously; and the lifetimes of sensors that die later can be extended by renewable energy much more significantly than those that die early, which is very good news to applications that can tolerate the death of a fraction of sensors.

Originality/value

In this paper, the first optimization formulation for maximizing both unconditional and conditional lifetime sequences of WSNs with renewable energy sources was provided. Only the conditional lifetime sequence has been investigated in a previous work, but this method runs n-times faster than the previous work, with n being the number of nodes in the WSN.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 September 2019

Prasanth A. and Pavalarajan S.

The purpose of this paper is to enhance the network lifetime of WSN. In wireless sensor network (WSN), the sensor nodes are widely deployed in a terrestrial environment to sense…

Abstract

Purpose

The purpose of this paper is to enhance the network lifetime of WSN. In wireless sensor network (WSN), the sensor nodes are widely deployed in a terrestrial environment to sense and evaluate the physical circumstances. The sensor node near to the sink will deplete more energy faster than other nodes; hence, there arises an energy hole and network partitioning problem in stationary sink-based WSN. Even though many mobile sink-based WSN is formulated to mitigate energy hole, inappropriate placement of sink leads to packet drop and affect the network lifetime of WSN. Therefore, it is necessary to have an efficient sink mobility approach to prevent an aforesaid problem.

Design/methodology/approach

In this paper, zone-based sink mobility (ZBSM) approach is proposed in which the zone formation along with controlled sink mobility is preferred for energy hole mitigation and optimal sink node placement. In ZBSM, the sink decides to move toward strongly loaded zone (SLZ) for avoiding network partitioning problems where the selection of SLZ can be carried out by using Fuzzy Logic.

Findings

The performance results confirm that the proposed scheme reduces energy consumption as well as enhances the network lifetime compared with an existing scheme.

Originality/value

A new optimal sink node placement is proposed to enhance the network lifetime and packet delivery ratio of WSN.

Details

Sensor Review, vol. 39 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 31 December 2006

Maulin Patel, S. Venkateson and R. Chandrasekaran

A critical issue in the design of routing protocols for wireless sensor networks is the efficient utilization of resources such as scarce bandwidth and limited energy supply. Many…

Abstract

A critical issue in the design of routing protocols for wireless sensor networks is the efficient utilization of resources such as scarce bandwidth and limited energy supply. Many routing schemes proposed in the literature try to minimize the energy consumed in routing or maximize the lifetime of the sensor network without taking into consideration limited capacities of nodes and wireless links. This can lead to congestion, increased delay, packet losses and ultimately to retransmission of packets, which will waste considerable amount of energy. This paper presents a Minimum‐cost Capacity‐constrained Routing (MCCR) protocol which minimize the total energy consumed in routing while guaranteeing that the total load on each sensor node and on each wireless link does not exceed its capacity. The protocol is derived from polynomial‐time minimum‐cost flow algorithms. Therefore protocol is simple and scalable. The paper improves the routing protocol in (1) to incorporate integrality, node capacity and link capacity constraints. This improved protocol is called Maximum Lifetime Capacity‐constrained Routing (MLCR). The objective of MLCR protocol is to maximize the time until the first battery drains its energy subject to the node capacity and link capacity constraints. A strongly polynomial time algorithm is proposed for a special case of MLCR problem when the energy consumed in transmission by a sensor node is constant. Simulations are performed to analyzed the performance of the proposed protocols.

Details

International Journal of Pervasive Computing and Communications, vol. 2 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 6 September 2011

Sami J. Habib and Paulvanna N. Marimuthu

Continuous exposure and over‐utilization of sensors in harsh environments can lead some sensors to fail, and thereby not covering the service area effectively and efficiently. The…

Abstract

Purpose

Continuous exposure and over‐utilization of sensors in harsh environments can lead some sensors to fail, and thereby not covering the service area effectively and efficiently. The purpose of this paper is to propose a two‐level coverage restoration scheme for the failing sensors by the existing sensors deployed in the immediate neighborhood of the failing sensors. The restoration scheme extends the search process to the set of failed sensors' corner neighbors at a second stage, with non‐available immediate active neighboring sensors at its first stage. Thus, the coverage restoration scheme attempts to sustain a maximum area of coverage with failed sensors.

Design/methodology/approach

The authors have considered a wireless sensor network (WSN), comprised of sensors deployed in a grid‐based arrangement in an inaccessible arena. The authors have formulated the coverage restoration problem as an optimization problem, to find the nearest and most apt neighbor sensors to reach solutions of maximizing the coverage area with failed sensors, while minimizing the energy consumption. Simulated annealing has been utilized as a search algorithm to find out the neighboring sensors with maximal energy in the vicinity of the failed node to cover its area.

Findings

The experimental results within the optimization algorithm have demonstrated that the restoration scheme shows a better trade‐off in maximizing the coverage area up to 90 per cent with a decrease of 26 per cent lifespan. The performance of the algorithm is further improved with extended search space including the corner neighbors in addition to the immediate neighbors.

Practical implications

The proposed coverage restoration can be embedded within applications using WSN to restore the coverage and maintain its functionality with optimized energy consumption.

Originality/value

The paper employs a novel framework to restore the coverage of the failed sensors by doubling the sensing area of the neighborhood sensors, and it utilizes an optimization scheme to search for neighborhood sensors with maximal energy to extend the lifespan of WSN.

Details

International Journal of Pervasive Computing and Communications, vol. 7 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of over 1000