Search results

1 – 1 of 1
To view the access options for this content please click here
Article
Publication date: 1 January 2014

Yujie Zhang, Zhuoxiang Ren and David Lautru

The resolution of electroencephalography (EEG) forward problem by the finite element method (FEM) involves the modeling of current dipoles with the singularities. The…

Abstract

Purpose

The resolution of electroencephalography (EEG) forward problem by the finite element method (FEM) involves the modeling of current dipoles with the singularities. The purpose of the paper is to investigate the accuracy issue of the two alternative methods, the direct method and the subtraction method for the modeling of current dipoles.

Design/methodology/approach

Finite element modeling of current dipoles using the direct method and the alternative implementations of the subtraction method.

Findings

The accuracy and the performance of different methods are compared through a four-layer spherical head model with available analytical solution. Results show that the subtraction method involving only the surface integrals provides the best accuracy.

Originality/value

The subtraction method removes the difficulty of modeling the singularity of current dipoles but the accuracy depends on the implementation.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1