Search results

1 – 10 of 906
Article
Publication date: 12 January 2024

Ali Rashidi, George Lukic Woon, Miyami Dasandara, Mohsen Bazghaleh and Pooria Pasbakhsh

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers…

Abstract

Purpose

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers at a job site are paramount as they face both immediate and long-term risks such as falls and musculoskeletal disorders. To mitigate these dangers, sensor-based technologies have emerged as a crucial tool to promote the safety and well-being of workers on site. The implementation of real-time sensor data-driven monitoring tools can greatly benefit the construction industry by enabling the early identification and prevention of potential construction accidents. This study aims to explore the innovative method of prototype development regarding a safety monitoring system in the form of smart personal protective equipment (PPE) by taking advantage of the recent advances in wearable technology and cloud computing.

Design/methodology/approach

The proposed smart construction safety system has been meticulously crafted to seamlessly integrate with conventional safety gear, such as gloves and vests, to continuously monitor construction sites for potential hazards. This state-of-the-art system is primarily geared towards mitigating musculoskeletal disorders and preventing workers from inadvertently entering high-risk zones where falls or exposure to extreme temperatures could occur. The wearables were introduced through the proposed system in a non-intrusive manner where the safety vest and gloves were chosen as the base for the PPE as almost every construction worker would be required to wear them on site. Sensors were integrated into the PPE, and a smartphone application which is called SOTER was developed to view and interact with collected data. This study discusses the method and process of smart PPE system design and development process in software and hardware aspects.

Findings

This research study posits a smart system for PPE that utilises real-time sensor data collection to improve worksite safety and promote worker well-being. The study outlines the development process of a prototype that records crucial real-time data such as worker location, altitude, temperature and hand pressure while handling various construction objects. The collected data are automatically uploaded to a cloud service, allowing supervisors to monitor it through a user-friendly smartphone application. The worker tracking ability with the smart PPE can help to alleviate the identified issues by functioning as an active warning system to the construction safety management team. It is steadily evident that the proposed smart PPE system can be utilised by the respective industry practitioners to ensure the workers' safety and well-being at construction sites through monitoring of the workers with real-time sensor data.

Originality/value

The proposed smart PPE system assists in reducing the safety risks posed by hazardous environments as well as preventing a certain degree of musculoskeletal problems for workers. Ultimately, the current study unveils that the construction industry can utilise cloud computing services in conjunction with smart PPE to take advantage of the recent advances in novel technological avenues and bring construction safety management to a new level. The study significantly contributes to the prevailing knowledge of construction safety management in terms of applying sensor-based technologies in upskilling construction workers' safety in terms of real-time safety monitoring and safety knowledge sharing.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 29 April 2024

Dada Zhang and Chun-Hsing Ho

The purpose of this paper is to investigate the vehicle-based sensor effect and pavement temperature on road condition assessment, as well as to compute a threshold value for the…

Abstract

Purpose

The purpose of this paper is to investigate the vehicle-based sensor effect and pavement temperature on road condition assessment, as well as to compute a threshold value for the classification of pavement conditions.

Design/methodology/approach

Four sensors were placed on the vehicle’s control arms and one inside the vehicle to collect vibration acceleration data for analysis. The Analysis of Variance (ANOVA) tests were performed to diagnose the effect of the vehicle-based sensors’ placement in the field. To classify road conditions and identify pavement distress (point of interest), the probability distribution was applied based on the magnitude values of vibration data.

Findings

Results from ANOVA indicate that pavement sensing patterns from the sensors placed on the front control arms were statistically significant, and there is no difference between the sensors placed on the same side of the vehicle (e.g., left or right side). A reference threshold (i.e., 1.7 g) was computed from the distribution fitting method to classify road conditions and identify the road distress based on the magnitude values that combine all acceleration along three axes. In addition, the pavement temperature was found to be highly correlated with the sensing patterns, which is noteworthy for future projects.

Originality/value

The paper investigates the effect of pavement sensors’ placement in assessing road conditions, emphasizing the implications for future road condition assessment projects. A threshold value for classifying road conditions was proposed and applied in class assignments (I-17 highway projects).

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Content available
Article
Publication date: 4 January 2023

Shilpa Sonawani and Kailas Patil

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like…

Abstract

Purpose

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like India and China, it is highly recommended to monitor the quality of air which can help people with respiratory diseases, children and elderly people to take necessary precautions and stay safe at their homes. The purpose of this study is to detect air quality and perform predictions which could be part of smart home automation with the use of newer technology.

Design/methodology/approach

This study proposes an Internet-of-Things (IoT)-based air quality measurement, warning and prediction system for ambient assisted living. The proposed ambient assisted living system consists of low-cost air quality sensors and ESP32 controller with new generation embedded system architecture. It can detect Indoor Air Quality parameters like CO, PM2.5, NO2, O3, NH3, temperature, pressure, humidity, etc. The low cost sensor data are calibrated using machine learning techniques for performance improvement. The system has a novel prediction model, multiheaded convolutional neural networks-gated recurrent unit which can detect next hour pollution concentration. The model uses a transfer learning (TL) approach for prediction when the system is new and less data available for prediction. Any neighboring site data can be used to transfer knowledge for early predictions for the new system. It can have a mobile-based application which can send warning notifications to users if the Indoor Air Quality parameters exceed the specified threshold values. This is all required to take necessary measures against bad air quality.

Findings

The IoT-based system has implemented the TL framework, and the results of this study showed that the system works efficiently with performance improvement of 55.42% in RMSE scores for prediction at new target system with insufficient data.

Originality/value

This study demonstrates the implementation of an IoT system which uses low-cost sensors and deep learning model for predicting pollution concentration. The system is tackling the issues of the low-cost sensors for better performance. The novel approach of pretrained models and TL work very well at the new system having data insufficiency issues. This study contributes significantly with the usage of low-cost sensors, open-source advanced technology and performance improvement in prediction ability at new systems. Experimental results and findings are disclosed in this study. This will help install multiple new cost-effective monitoring stations in smart city for pollution forecasting.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 25 December 2023

Thomas Trabert, Luca Doerr and Claudia Lehmann

The organizational digital transformation (ODT) in companies presents small and medium-sized enterprises (SMEs) – who remain at the beginning of this transformation – with the…

1048

Abstract

Purpose

The organizational digital transformation (ODT) in companies presents small and medium-sized enterprises (SMEs) – who remain at the beginning of this transformation – with the challenge of offering digital services based on sensor technologies. Against this backdrop, the present paper identifies ways SMEs can enable digital servitization through sensor technology and defines the possible scope of the organizational transformation process.

Design/methodology/approach

Around 21 semi-structured interviews were conducted with experts from different hierarchical levels across the German manufacturing SME ecosystem. Using the Gioia methodology, fields of action were identified by focusing on influencing factors and opportunities for developing these digital services to offer them successfully in the future.

Findings

The complexity of existing sensor offerings must be mastered, and employees' (data) understanding of the technology has increased. Knowledge gaps, which mainly relate to technical and organizational capabilities, must be overcome. The potential of sensor technology was considered on an individual, technical and organizational level. To enable the successful implementation of service offerings based on sensor technology, all relevant stakeholders in the ecosystem must network to facilitate shared value creation. This requires standardized technical and procedural adaptations and is an essential prerequisite for data mining.

Originality/value

Based on this study, current problem areas were analyzed, and potentials that create opportunities for offering digital sensor services to manufacturing SMEs were identified. The identified influencing factors form a conceptual framework that supports SMEs' future development of such services in a structured manner.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 11 January 2024

Andrei Khurshudov

A smart city integrates a comprehensive suite of technologies, which inherently require data to function effectively. It is designed with the intention of amassing all available…

Abstract

Purpose

A smart city integrates a comprehensive suite of technologies, which inherently require data to function effectively. It is designed with the intention of amassing all available data concerning machines, devices, infrastructure, individuals and their surroundings. This commentary addresses the evolution of smart cities over time, the increasing extent of data collection, the growing pressure on personal privacy and people's reactions to these trends. The article highlights the contradiction between the needs of the city and the desires of its inhabitants. It notes that people react differently to gradual versus abrupt changes in data-collecting technologies and services. It also suggests that more work needs to be done to prepare both smart cities and the human population for a sustainable, mutually beneficial future.

Design/methodology/approach

This commentary presents a viewpoint on the subject of data collection and privacy in smart cities, drawing on various sources to support its observations and conclusions.

Findings

The primary focus of this discussion is on the technological evolution of the cities. It emphasizes that, as cities get smarter, they offer more conveniences in exchange for various types of data, highlighting the likelihood that pressure on personal privacy will continue to escalate. This is due to the increasing pervasiveness of data-collecting technologies in every aspect of lives and urban environments. These environments are expected to become progressively smarter each year. Given this context, and to ensure a seamless transition to smart and sustainable cities, it is imperative that today's privacy discussions start to focus not only just on the existing but also on the future conditions and challenges that citizens are expected to encounter.

Originality/value

This commentary delves into the existing gaps in understanding the contradiction between the data-collection “needs” of smart cities, the direction in which the cities are evolving and people's awareness of how much data they will have to surrender in the future. It also highlights the risk of people gradually relinquishing nearly all their privacy, often without noticing, in exchange for the ever-increasing conveniences offered by smart cities.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 16 January 2024

Nasim Babazadeh, Jochen Teizer, Hans-Joachim Bargstädt and Jürgen Melzner

Construction activities conducted in urban areas are often a source of significant noise disturbances, which cause psychological and health issues for residents as well as…

118

Abstract

Purpose

Construction activities conducted in urban areas are often a source of significant noise disturbances, which cause psychological and health issues for residents as well as long-term auditory impairments for construction workers. The limited effectiveness of passive noise control measures due to the close proximity of the construction site to surrounding neighborhoods often results in complaints and eventually lawsuits. These can then lead to delays and cost overruns for the construction projects.

Design/methodology/approach

The paper proposes a novel approach to integrating construction noise as an additional dimension into scheduling construction works. To achieve this, a building information model, including the three-dimensional construction site layout object geometry, resource allocation and schedule information, is utilized. The developed method explores further project data that are typically available, such as the assigned equipment to a task, its precise location, and the estimated duration of noisy tasks. This results in a noise prediction model by using noise mapping techniques and suggesting less noisy alternative ways of construction. Finally, noise data obtained from sensors in a case study contribute real values for validating the proposed approach, which can be used later to suggest solutions for noise mitigation.

Findings

The results of this study indicate that the proposed approach can accurately predict construction noise given a few available parameters from digital project planning and sensors installed on a construction site. Proactively integrating construction noise control measures into the planning process has benefits for both residents and construction managers, as it reduces construction noise-related disturbances, prevents unexpected legal issues and ensures the health and well-being of the workforce.

Originality/value

While previous research has concentrated on real-time data collection using sensors, a more effective solution would also involve addressing and mitigating construction noise during the pre-construction work planning phase.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Book part
Publication date: 25 October 2023

Mohammad Raziuddin Chowdhury, Md Sakib Ullah Sourav and Rejwan Bin Sulaiman

From the perspective of any nation, rural areas generally present a comparable set of problems, such as a lack of proper healthcare, education, living conditions, wages and market…

Abstract

From the perspective of any nation, rural areas generally present a comparable set of problems, such as a lack of proper healthcare, education, living conditions, wages and market opportunities. Some nations have created and developed the concept of smart villages during the previous few decades, which effectively addresses these issues. The landscape of traditional agriculture has been radically altered by digital agriculture, which has also had a positive economic impact on farmers and those who live in rural regions by ensuring an increase in agricultural production. We explored current issues in rural areas, and the consequences of smart village applications, and then illustrate our concept of smart village from recent examples of how emerging digital agriculture trends contribute to improving agricultural production in this chapter.

Details

Technology and Talent Strategies for Sustainable Smart Cities
Type: Book
ISBN: 978-1-83753-023-6

Keywords

Article
Publication date: 29 February 2024

Atefeh Hemmati, Mani Zarei and Amir Masoud Rahmani

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of…

Abstract

Purpose

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of data-driven applications and the advances in data analysis techniques, the potential for data-adaptive innovation in IoV applications becomes an outstanding development in future IoV. Therefore, this paper aims to focus on big data in IoV and to provide an analysis of the current state of research.

Design/methodology/approach

This review paper uses a systematic literature review methodology. It conducts a thorough search of academic databases to identify relevant scientific articles. By reviewing and analyzing the primary articles found in the big data in the IoV domain, 45 research articles from 2019 to 2023 were selected for detailed analysis.

Findings

This paper discovers the main applications, use cases and primary contexts considered for big data in IoV. Next, it documents challenges, opportunities, future research directions and open issues.

Research limitations/implications

This paper is based on academic articles published from 2019 to 2023. Therefore, scientific outputs published before 2019 are omitted.

Originality/value

This paper provides a thorough analysis of big data in IoV and considers distinct research questions corresponding to big data challenges and opportunities in IoV. It also provides valuable insights for researchers and practitioners in evolving this field by examining the existing fields and future directions for big data in the IoV ecosystem.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 7 September 2020

Will Brown, Melanie King and Yee Mey Goh

This paper is premised upon an analysis of 26 cities within the UK regarding their smart city projects. Each city was analyzed through news articles, reports and policy documents…

Abstract

This paper is premised upon an analysis of 26 cities within the UK regarding their smart city projects. Each city was analyzed through news articles, reports and policy documents to ascertain the level of each city's development as a smart city. Each was coded by separating the projects into five types, which were ranked on a scale from 0 (no plans for use) to 5 (project type in use). The most common types are the provision of open data and the creation of business ecosystems as the primary driver of the smart city. However, many councils and enterprises proclaim smartness before the technology is actually in use, making it difficult to separate what is utilised and what is under development. Therefore, this paper further carried out an analysis of 20 cities and their intended plans to usher in the smart city, to observe the expected emergence of smart city technology. This was achieved by interrogating various roadmaps and policy documents produced by the respective cities. It was found that the most prevalent form of emergent smart city technology is the rollout of 5G and increased educational programmes alongside a proliferation of internet of things and electric vehicle usage.

Details

Emerald Open Research, vol. 1 no. 5
Type: Research Article
ISSN: 2631-3952

Keywords

Book part
Publication date: 14 December 2023

Filippo Marchesani

This chapter aims to provide a comprehensive understanding of the urban outcomes of smart city projects, focusing on their primary objectives. The first objective is to facilitate…

Abstract

This chapter aims to provide a comprehensive understanding of the urban outcomes of smart city projects, focusing on their primary objectives. The first objective is to facilitate the management and flow of information, data, and resources to enhance resource efficiency, sustainability, and the quality of life for citizens and stakeholders. This chapter offers insights into the urban objectives of smart city projects within the local ecosystem, with a specific emphasis on digital and key urban outcomes. It provides an overview of the digital outcomes, including the advancement of digital systems for safety and urban monitoring, the provision of customized digital services, and the promotion of citizen engagement through digital platforms. This chapter also evaluates the environmental outcomes of smart city projects, such as improved quality of life, increased urban efficiency, and contributions to a sustainable environment. To provide a well-rounded understanding, interviews with policymakers and city managers, as well as case studies from cities like London, Medellin, Helsinki, Singapore, Girona, and San Diego, are incorporated. Furthermore, this chapter incorporates data and findings from top-tier international journals to provide a clear understanding of the impact of smart cities on the local ecosystem.

1 – 10 of 906