Search results

1 – 5 of 5
Article
Publication date: 30 September 2019

Ondřej Vaverka, Daniel Koutny and David Palousek

This paper aims to present the design process, manufacturing and testing of a prototype of an axle carrier for Formula Student race car. The axle carrier is topologically…

Abstract

Purpose

This paper aims to present the design process, manufacturing and testing of a prototype of an axle carrier for Formula Student race car. The axle carrier is topologically optimized and additively manufactured using selective laser melting (SLM).

Design/methodology/approach

The shape of the axle carrier was created in three design stages using topology optimization and four additional design stages based on finite element calculations and experimental testing. Topology optimization was performed on the basis of relevant load cases. The sixth design stage was manufactured by SLM and then tested on a loading device together with photogrammetry measurement to obtain the real deformation. Measured deformations were compared with deformation calculated by the finite element method (FEM), verified and experiences used in the last design stage.

Findings

An additively manufactured axle carrier has a minimal safety factor of 1.2 according to experimental testing. The weight and maximal deformations are comparable with the milled part, although the material has about 50 per cent worse yield strength. The topologically optimized axle carrier proved big potential in the effective distribution of material and the improvement of toughness.

Practical implications

This paper helps the Formula Student team to enhance the driving performance while keeping low weight. It also improves further development and upgrading of the race car.

Originality/value

The whole design of the topologically optimized part was investigated – from estimation of the loads to experimental verification of FEM analysis on real part.

Details

Rapid Prototyping Journal, vol. 25 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 October 2018

David Palousek, Martin Kocica, Libor Pantelejev, Lenka Klakurkova, Ladislav Celko, Daniel Koutny and Jozef Kaiser

Materials with a high thermal conductivity, such as Cu-alloys hold the most interest to the plastic moulding industry. Additive manufacturing (AM), especially selective laser…

Abstract

Purpose

Materials with a high thermal conductivity, such as Cu-alloys hold the most interest to the plastic moulding industry. Additive manufacturing (AM), especially selective laser melting (SLM) of metals, allows the production of parts with complicated internal cooling and increased production efficiency. The portfolio of alloys for metal AM is limited and still missing process parameters for the processing of copper alloys. This paper aims to preview the process parameters of high-strength alloy Cu7.2Ni1.8Si1Cr processed by SLM.

Design/methodology/approach

An experimental approach is adopted to investigate porosity and mechanical properties of SLM specimens and its comparison with standard material AMPCOLOY 944. Optimization of porosity was performed using line and cube specimens; mechanical properties and microstructure were evaluated by tensile testing and metallography.

Findings

Optimum processing parameters for fabrication of Cu-alloy specimens with a relative density of 99.95 per cent were identified, and no cracks were detected. Mechanical testing of SLM specimens showed the ultimate tensile strength, proof stress of 0.2 and elongation of 380, 545 MPa and 16.9 per cent. The alloy is suitable for laser AM, thanks to its processability at a relatively high laser scanning speeds and thus its promising price of part/costs ratio.

Research limitations/implications

The paper describes the initial state of research – the follow-up tests focussed on mechanical testing, fatigue and statistical evaluation need to be conducted. The process parameters are developed only for bulk geometry – optimal setup for lattice structures and thin walls has not been explored yet.

Practical implications

The research findings in this work could be used for production of 3D printed parts and after the tuning of additional parameters, e.g. for up- and down-skin zones, could be used for special application such as energy exchange.

Originality/value

This work produces the processing of new material suitable for laser AM. Cu7.2Ni1.8Si1Cr alloy could be the prospective material from the group of Cu alloys suitable for moulds manufacturing and thermal applications.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 January 2014

David Palousek, Jiri Rosicky, Daniel Koutny, Pavel Stoklásek and Tomas Navrat

– The purpose of this paper is to describe a manufacturing methodology for a wrist orthosis. The case study aims to offer new approaches in the area of human orthoses.

2469

Abstract

Purpose

The purpose of this paper is to describe a manufacturing methodology for a wrist orthosis. The case study aims to offer new approaches in the area of human orthoses.

Design/methodology/approach

The article describes the utilization of rapid prototyping (RP), passive stereo photogrammetry and software tools for the orthosis design process. This study shows the key points of the design and manufacturing methodology. The approach uses specific technologies, such as 3D digitizing, reverse engineering and polygonal-surface software, FDM RP and 3D printing.

Findings

The results show that the used technologies reflect the patient's requirements and also they could be an alternative solution to the standard method of orthosis design.

Research limitations/implications

The methodology provides a good position for further development issues.

Practical implications

The methodology could be usable for clinical practice and allows the manufacturing of the perfect orthosis of the upper limb. The usage of this methodology depends on the RP system and type of material.

Originality/value

The article describes a particular topical problem and it is following previous publications in the field of human orthoses. The paper presents the methodology of wrist orthosis design and manufacturing. The paper presents an alternative approach applicable in clinical practice.

Details

Rapid Prototyping Journal, vol. 20 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 December 2020

Rafael Moreno, Diego Carou, Daniel Carazo-Álvarez and Munish Kumar Gupta

3D printing is gaining attention in the medical sector for the development of customized solutions for a wide range of applications such as temporary external implants. The…

Abstract

Purpose

3D printing is gaining attention in the medical sector for the development of customized solutions for a wide range of applications such as temporary external implants. The materials used for the manufacturing process are critical, as they must provide biocompatibility and adequate mechanical properties. This study aims to evaluate and model the influence of the printing parameters on the mechanical properties of two biocompatible materials.

Design/methodology/approach

In this study, the mechanical properties of 3D-printed specimens of two biocompatible materials (ABS medical and PLActive) were evaluated. The influence of several printing parameters (infill density, raster angle and layer height) was studied and modelled on three response variables: ultimate tensile strength, deformation at the ultimate tensile strength and Young’s modulus. Therefore, statistical models were developed to predict the mechanical responses based on the selected printing parameters.

Findings

The used methodology allowed obtaining compact models that show good fit, particularly, for both the ultimate tensile strength and Young’s modulus. Regarding the deformation at ultimate tensile strength, this output was found to be influenced by more factors and interactions, resulting in a slightly less precise model. In addition, the influence of the printing parameters was discussed in the work.

Originality/value

The presented paper proposed the use of statistical models to select the printing parameters (infill density, raster angle and layer height) to optimize the mechanical response of external medical aids. The models will help users, researchers and firms to develop optimized solutions that can reduce material costs and printing time but guaranteeing the mechanical response of the parts.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 January 2016

Steffan Daniel and Dominic Eggbeer

This paper aims to present novel techniques for designing maxillofacial prostheses using computer-aided design (CAD) and additive manufacture (AM), focusing on the integration of…

Abstract

Purpose

This paper aims to present novel techniques for designing maxillofacial prostheses using computer-aided design (CAD) and additive manufacture (AM), focusing on the integration of osseointegrated retention components. A fully computer-aided approach is considered as a major step towards reducing patient consultation time and an efficient workflow.

Design/methodology/approach

The workflow was illustrated through a phantom model. 3D laser scanning was used to capture the phantom anatomy and pre-fabricated geometric features, which enabled the implant positions to be precisely reverse engineered in the data. A novel CAD workflow was used to design the retention mechanisms and a mould. The individual components were fabricated using AM. A definitive silicone prosthesis that incorporated a bar/clip retention mechanism was then fabricated.

Findings

The research demonstrated that retention components can be integrated into prostheses using appropriate CAD and AM technologies.

Originality/value

This study demonstrates the feasibility of a computer-aided workflow for designing facial prostheses that incorporate osseointegrated retention mechanisms. Novel techniques were developed to: digitise abutment details using custom scanning locators; design retention components; manufacture retention components using AM; integrate retention components into a CAD and AM prosthesis mould. This overcomes limitations identified in previously published cases and demonstrated significant potential to reduce patient consultation time and create a clinically viable process.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

All dates (5)

Content type

1 – 5 of 5