Search results

1 – 2 of 2
To view the access options for this content please click here
Book part
Publication date: 19 November 2014

Daniel Felix Ahelegbey and Paolo Giudici

The latest financial crisis has stressed the need of understanding the world financial system as a network of interconnected institutions, where financial linkages play a…

Abstract

The latest financial crisis has stressed the need of understanding the world financial system as a network of interconnected institutions, where financial linkages play a fundamental role in the spread of systemic risks. In this paper we propose to enrich the topological perspective of network models with a more structured statistical framework, that of Bayesian Gaussian graphical models. From a statistical viewpoint, we propose a new class of hierarchical Bayesian graphical models that can split correlations between institutions into country specific and idiosyncratic ones, in a way that parallels the decomposition of returns in the well-known Capital Asset Pricing Model. From a financial economics viewpoint, we suggest a way to model systemic risk that can explicitly take into account frictions between different financial markets, particularly suited to study the ongoing banking union process in Europe. From a computational viewpoint, we develop a novel Markov chain Monte Carlo algorithm based on Bayes factor thresholding.

To view the access options for this content please click here
Book part
Publication date: 19 November 2014

Abstract

Details

Bayesian Model Comparison
Type: Book
ISBN: 978-1-78441-185-5

1 – 2 of 2