Search results

1 – 1 of 1
Article
Publication date: 1 July 2020

Zhang Jun, Muhammad Ayaz Akbar, Wang Xin lei and Danaish

The purpose of this study is to present the optimization of the design and measurement principle of a six-component force/thrust measurement stand. This study highlights some key…

Abstract

Purpose

The purpose of this study is to present the optimization of the design and measurement principle of a six-component force/thrust measurement stand. This study highlights some key problems found in previous studies and proposes improvements in design and measurement principles.

Design/methodology/approach

The numerical simulation approach is used to verify the proposed improvements. An improved design and measurement principle are proposed and to verify the proposed improvements, simulation experiments are conducted. The data obtained from simulations are analyzed through the proposed improved measurement principle. The proposed stand is capable of measuring the main thrust and other components as pitch, yaw and roll. The stand is capable of measuring the main thrust more than 50,000 N and orthogonal thrust components more than 1,000 N. Improved design of measurement stand is also capable of measuring moments in three-axis more than 150 Nm. Thrust stand consists of two main sections: front and rare. Stand consists of seven piezoelectric force sensors to measure all components of force.

Findings

The simulations experiments and basic theoretical laws of kinematics prove that the proposed design indeed improves the precision of measurement and also enhance the efficiency of design. Evaluation results show that the measurement stand designed is highly functional. Non-linearity, coupling and repeatability errors are found to be within acceptable range during numerical simulations.

Originality/value

This study is unique in this kind. This study identifies the key problems found in previous studies and proposes an improved design and measurement principle. This study provides evidence for the improvements to be really functional and necessary.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Access

Year

Content type

Article (1)
1 – 1 of 1