Search results

11 – 20 of over 1000
Article
Publication date: 5 August 2019

Min Zhang and Dongzhuo Wang

This paper aims to study the seismic response of frame structure with friction dampers.

168

Abstract

Purpose

This paper aims to study the seismic response of frame structure with friction dampers.

Design/methodology/approach

The state equation of the structure subjected to the earthquake is presented and solved, from which the maximum drift and the interlayer drift angle of the floors of the structure subjected to the seismic waves of four types of sites are analyzed.

Findings

The result indicates that the damping effect is significant on the floors with the friction damper but is almost little influence on the other floor.

Originality/value

The result indicates that the damping effect is significant on the floors with the friction damper but is almost little influence on the other floor.

Details

Engineering Computations, vol. 36 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2002

Jinwu Xiang, Guocai Hu and Xiaogu Zhang

An equivalent linear damping model is developed for forward flight condition, with the flap/lag/pitch kinematics and nonlinear characteristics of hydraulic damper taken into…

1177

Abstract

An equivalent linear damping model is developed for forward flight condition, with the flap/lag/pitch kinematics and nonlinear characteristics of hydraulic damper taken into account. Damper axial velocity is analyzed from the velocities of the damper‐to‐blade attachment point in time domain. For the case of blade lead‐lag oscillations without forced excitation and kinematics, the equivalent linear damping is calculated from transient response with energy balance method, Fourier series based moving block analysis and Hilbert transform based technology, respectively. Results indicate that equivalent linear damping decreases significantly with lead‐lag forced excitation and flap/lag/pitch kinematics, especially with the latter in flight condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 30 July 2020

Xu Li, Jun Li, Xiaoyi Zhang, Jianfeng Gao and Chao Zhang

Viscous dampers are commonly used in large span cable-stayed bridges to mitigate seismic effects and have achieved great success.

Abstract

Purpose

Viscous dampers are commonly used in large span cable-stayed bridges to mitigate seismic effects and have achieved great success.

Design/methodology/approach

However, the nonlinear analysis on damper parameters is usually computational intensive and nonobjective. To address these issues, this paper proposes a simplified method to determine the viscous damper parameters for double-tower cable-stayed bridges. An empirical formula of the equivalent damping ratio of viscous dampers is established through decoupling nonclassical damping structures and linearization of nonlinear viscous dampers. Shaking table tests are conducted to verify the feasibility of the proposed method. Moreover, this simplified method has been proved in long-span cable-stayed bridges.

Findings

The feasibility of this method is verified by the simplified model shaking table test. This simplified method for determining the parameters of viscous dampers is verified in cable-stayed bridges with different spans.

Originality/value

This simplified method has been validated in cable-stayed bridges with various spans.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 31 July 2020

Min Zhang and Huaying Pang

The purpose of this paper is to equip damping performance of frame structure with viscoelastic dampers connected to supports is studied, the influence of the damper supports and…

Abstract

Purpose

The purpose of this paper is to equip damping performance of frame structure with viscoelastic dampers connected to supports is studied, the influence of the damper supports and the damping parameters on the damping performance of the structure is analyzed, the practical economical arrangement of viscoelastic dampers on each floor is researched and the calculation method of the seismic effect of the damping structure is presented.

Design/methodology/approach

In this paper, Fourier transform is applied to the vibration equation of the structure equipped with viscoelastic dampers, the frequency domain solution of the vibration equation is solved and the time-domain solution of the equation is obtained by Fourier inverse transform, from which effects of the support coefficient and the relaxing time coefficient on the seismic response of the structure are analyzed.

Findings

The seismic effect of each floor and the bottom shear force of each vibration mode of a structure are analyzed, which indicates that the relaxing time coefficient of the damper should be controlled reasonably.

Originality/value

In this paper, the vibration equation is solved in the frequency domain for frame structure equipped with viscoelastic dampers. The time-domain solution of the equation is obtained by Fourier inverse transform, from which the seismic response of frame structure equipped with viscoelastic damper connected to supports is studied.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2002

Zbigniew Dżygadło and Witold Perkowski

The supercritical propulsion shaft equipped with a dry friction damper has been designed for a polish ultra light helicopter named IS‐2. Models of the shaft and the damper and…

Abstract

The supercritical propulsion shaft equipped with a dry friction damper has been designed for a polish ultra light helicopter named IS‐2. Models of the shaft and the damper and some results of analysis of the shaft flexural vibrations are presented.As it turned out the shaft vibrations strongly depend on parameters of the damper (especially on the damper gap) and can be regular or chaotic. There are two main cases: the damper with a small gap and the damper with a big gap, when compared to shaft eccentricity.

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 10 June 2022

Guodong Li, Wenhan Liu and Guangzhi Feng

Aiming at the characteristics of large stiffness, low ductility, and poor energy dissipation capacity of cross-laminated timber (CLT) shear wall, a method of opening vertical…

Abstract

Purpose

Aiming at the characteristics of large stiffness, low ductility, and poor energy dissipation capacity of cross-laminated timber (CLT) shear wall, a method of opening vertical joints and adding low-yield dampers in CLT shear wall is proposed to improve its energy dissipation capacity and ductility.

Design/methodology/approach

The finite element model of CLT shear walls with low-yield dampers and dampers assembly was established by ABAQUS. The structural shape of low-yield dampers that meet the requirements of vertical joints in CLT shear walls is studied by numerical analysis. The influence of the number and position of low-yield dampers on the energy dissipation of the shear wall system is studied.

Findings

The results show that the low-yield damper with diamond openings should be used in the CLT shear wall, and the energy dissipation effect is the best when the CLT shear wall is uniformly covered with low-yield dampers. After the uniform arrangement of four groups of low-yield steel dampers, the energy consumption of the CLT shear wall increases by 75.38%, and the ductility increases by 13.22%.

Originality/value

There are few studies on replacing connectors between shear walls with low-yield steel dampers, and rectangular soft steel dampers are prone to stress concentration and poor deformation capacity. Therefore, this paper establishes the model of perforated low-yield damper and CLT and makes numerical analysis to determine the opening form, geometric parameters of low-yield damper, and the optimal layout scheme in CLT shear wall.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 July 2020

Xiaolei Jiao, Jinxiu Zhang, Hongchao Zhao and Yong Yan

Bellows-type fluid viscous damper can be used to isolate micro vibration in high-precision satellites. The conventional model cannot describe hydraulic stiffness in the medium…

Abstract

Purpose

Bellows-type fluid viscous damper can be used to isolate micro vibration in high-precision satellites. The conventional model cannot describe hydraulic stiffness in the medium- and high-frequency domain of this damper. A simplified analytical model needs to be established to analyze hydraulic stiffness of the damping element in this damper.

Design/methodology/approach

In this paper, a bellows-type fluid viscous damper is researched, and a simplified model of the damping element in this damper is proposed. Based on this model, the hydraulic stiffness and damping of this damper in the medium- and high-frequency domains are studied, and a comparison is made between the analytical model and a finite element model to verify the analytical model.

Findings

The results show that when silicone oil has low viscosity, a model that considers the influence of the initial segment of the damping orifice is more reasonable. In the low-frequency domain, hydraulic stiffness increases quickly with frequency and remains stable when the frequency increases to a certain value; the stable stiffness can reach 106 N/m, which is much higher than the main stiffness. Excessive dynamic stiffness in the high-frequency domain will cause poor vibration isolation performance. Adding compensation bellows to the end of the original isolator may be an effective solution.

Practical implications

A model of the isolator containing the compensation bellows can be derived based on this analytical model. This research can also be used for dynamic modeling and vibration isolation performance analysis of a vibration isolation platform based on this bellows-type fluid viscous damper.

Originality/value

This paper proposed a simplified model of damping element in bellows-type fluid viscous damper, which can be used to analyze hydraulic stiffness in this damper and it was found that this damper showed stable hydraulic stiffness in the medium- and high-frequency domains.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 May 2023

Cheng Xue, Zhaowang Xia, Xingsheng Lao and Zhengqi Yang

The purpose of this study is to provide some references about applying the semi-active particle damper to enhance the stability of the pipe structure.

78

Abstract

Purpose

The purpose of this study is to provide some references about applying the semi-active particle damper to enhance the stability of the pipe structure.

Design/methodology/approach

This paper establishes the dynamical models of semi-active particle damper based on traditional dynamical theory and fractional-order theory, respectively. The semi-active particle damping vibration isolation system applied in a pipe structure is proposed, and its analytical solution compared with G-L numerical solution is solved by the averaging method. The quantitative relationships of fractional-order parameters (a and kp) are confirmed and their influences on the amplitude-frequency response of the vibration isolation system are analyzed. A fixed point can be obtained from the amplitude-frequency response curve, and the optimal parameter used for improving the vibration reduction effect of semi-active particle damper can be calculated based on this point. The nonlinear phenomenon caused by nonlinear oscillators is also investigated.

Findings

The results show that the nonlinear stiffness parameter p will cause the jump phenomenon while p is close to 87; with the variation of nonlinear damping parameter μ, the pitchfork bifurcation phenomenon will occur with an unstable branch after the transient response; with the change of fractional-order coefficient kp, a segmented bifurcation phenomenon will happen, where an interval that kp between 18.5 and 21.5 has no bifurcation phenomenon.

Originality/value

This study establishes a mathematical model of the typical semi-active particle damping vibration isolation system according to fractional-order theory and researches its nonlinear characteristics.

Open Access
Article
Publication date: 15 November 2022

Liyao Song, Bai Chen, Bo Li, Rupeng Zhu and Dan Wang

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there…

Abstract

Purpose

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there exists excessive vibration when the shaft passes through the critical frequency. Dry friction damper is the equipment applied to the drive shaft to suppress the excessive vibration. In order to figure out the damping mechanism of the dry friction damper and improve the damping efficiency, the dynamic model of the shaft/damper system is established based on the Jeffcott rotor model.

Design/methodology/approach

The typical frequency response of the system is studied through bifurcation diagrams, amplitude-frequency characteristic curves and waterfall frequency response spectrum. The typical transient responses under frequency sweeps are also obtained.

Findings

The results show that the response of the system changes from periodic no-rub motion to quasi-periodic rub-impact motion, and then to synchronous full annular rub-impact, and finally, back to periodic no-rub motion. The slip of the rub-impact ring improves the stability of the system. Besides, the effects of the system parameters including critical dry friction force, rub-impact friction coefficient, initial clearance on the stability and the vibration damping capacity are studied. It is observed that the stability changes significantly varying the three parameters respectively. The vibration damping capacity is mainly affected by the critical dry friction force and the initial clearance.

Originality/value

Presented results provide guidance for the design of the dry friction damper.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 1 May 1999

Alessandra Aprile and Andrea Benedetti

A direct integration method for the dynamic analysis of structures equipped with viscoelastic dampers (VED) is presented in this paper. The constitutive model of the damper is set…

Abstract

A direct integration method for the dynamic analysis of structures equipped with viscoelastic dampers (VED) is presented in this paper. The constitutive model of the damper is set using a system of Maxwell elements composed in parallel (MPS); the evolutive behavior of the VE material is accounted for by introducing temperature‐dependent mechanical properties. The solution procedure follows an incremental approach of implicit type that, by means of a discrete‐time formulation of the problem, allows expression of the damping force discretization in a form suitable to be included in a standard integration scheme. The resulting algorithm is proved to be very effective and robust; the distinctive features of the proposed numerical method suggest the possibility of a successful implementation of an MPS procedure in the frame of a standard finite element code.

Details

Engineering Computations, vol. 16 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

11 – 20 of over 1000