Search results

1 – 10 of 583
Article
Publication date: 1 March 1992

C. SAOURIDIS and J. MAZARS

Simple but also accurate models are needed to predict the failure response of concrete structures. Simplicity involves modelling assumptions while accuracy involves objectivity of…

Abstract

Simple but also accurate models are needed to predict the failure response of concrete structures. Simplicity involves modelling assumptions while accuracy involves objectivity of both the experimentally identified model parameters and the numerica results. For concrete‐like heterogeneous and brittle materials, the modelling assumptions idealizing the material as a homogeneous continuum with classical linear or non‐linear behaviour, leads to some problems at the identification stage, namely the size effect phenomena. A continuum damage model, representing the non‐linear behaviour due to microcracking, is proposed here for predictive computations of structural responses. A Weibull based theory is used to determine, in a statistical sense, the value of the initial damage threshold. The essential influence of material heterogeneity on the damage evolution, is accounted for with a bi‐scale approach which is based on the idea of the non‐local continuum with local strain. It has already established that the non‐local approaches yield realistic failure predictions and the numerical results are convergent for subsequent mesh refinements. The applications presented here show the ability of the approach to predict the failure response of concrete structures without being obscured by size effect problems.

Details

Engineering Computations, vol. 9 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1988

Gilles Pijaudier‐Cabot, Zdeněk P. Bažant and Mazen Tabbara

This paper presents a comparison of various models for strain‐softening due to damage such as cracking or void growth, as proposed recently in the literature. Continuum‐based…

Abstract

This paper presents a comparison of various models for strain‐softening due to damage such as cracking or void growth, as proposed recently in the literature. Continuum‐based models expressed in terms of softening stress—strain relations, and fracture‐type models expressed in terms of softening stress—displacement relations are distinguished. From one‐dimensional wave propagation calculations, it is shown that strain‐localization into regions of finite size cannot be achieved. The previously well‐documented spurious convergence is obtained with continuum models, while stress—displacement relations cannot model well smeared‐crack situations. Continuum models may, however, be used in general if a localization limiter is implemented. Gradient‐type localization limiters appear to be rather complicated; they require solving higher‐order differential equations of equilibrium with additional bourdary conditions. Non‐local localization limiters, especially the non‐local continuum with local strain, in which only the energy dissipating variables are non‐local, is found to be very effective, and also seems to be physically realistic. This formulation can correctly model the transition between homogeneous damage states and situations in which damage localizes into small regions that can be viewed as cracks. The size effect observed in the experimental and numerical response of specimens in tension or compression is shown to be a consequence of this progressive transition from continuum‐type to fracture‐type formulations.

Details

Engineering Computations, vol. 5 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2605

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 January 2009

D. Brancherie and A. Ibrahimbegovic

The purpose of this paper is to present a finite element model capable of describing both the diffuse damage mechanism which develops first during the loading of massive brittle…

Abstract

Purpose

The purpose of this paper is to present a finite element model capable of describing both the diffuse damage mechanism which develops first during the loading of massive brittle structures and the failure process, essentially due to the propagation of a macro‐crack responsible for the softening behaviour of the structure. The theoretical developments for such a model are presented, considering an isotropic damage model for the continuum and a Coulomb‐type criterion for the localized part.

Design/methodology/approach

This is achieved by activating subsequently diffuse and localized damage mechanisms. Localized phenomena are taken into account by means of the introduction of a displacement discontinuity at the element level.

Findings

It was found that, with such an approach, the final crack direction is predicted quite well, in fact much better than the prediction made by the fracture mechanics type of models considering combination of only elastic response and softening.

Originality/value

The presented model has the potential to describe complex damage phenomena in a cyclic and/or non‐proportional loading program, such as crack closing and re‐opening, cohesive resistance deterioration due to tangential sliding, by using only a few parameters compared to the traditional models for cyclic loading.

Details

Engineering Computations, vol. 26 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 February 2012

Juha Kuutti and Kari Kolari

The purpose of this paper is to present a new simplified local remeshing procedure for the study of discrete crack propagation in finite element (FE) mesh. The proposed technique…

Abstract

Purpose

The purpose of this paper is to present a new simplified local remeshing procedure for the study of discrete crack propagation in finite element (FE) mesh. The proposed technique accounts for the generation and propagation of crack‐like failure within an FE‐model. Beside crack propagation, the technique enables the analysis of fragmentation of initially intact continuum. The capability of modelling fragmentation is essential in various structure‐structure interaction analyses such as projectile impact analysis and ice‐structure interaction analysis.

Design/methodology/approach

The procedure combines continuum damage mechanics (CDM), fictitious crack approach and a new local remeshing procedure. In the approach a fictitious crack is replaced by a discrete crack by applying delete‐and‐fill local remeshing. The proposed method is independent of mesh topology unlike the traditional discrete crack approach. The procedure is implemented for 3‐D solid elements in commercial finite element software Abaqus/Explicit using Python scripting. The procedure is completely automated, such that crack initiation and propagation analyses do not require user intervention. A relatively simple constitutive model was implemented strictly for demonstrative purposes.

Findings

Well known examples were simulated to verify the applicability of the method. The simulations revealed the capabilities of the method and reasonable correspondence with reference results was obtained. Material fragmentation was successfully simulated in ice‐structure interaction analysis.

Originality/value

The procedure for modelling discrete crack propagation and fragmentation of initially intact quasi‐brittle materials based on local remeshing has not been presented previously. The procedure is well suited for simulation of fragmentation and is implemented in a commercial FE‐software.

Article
Publication date: 5 January 2010

J. Faleiro, S. Oller and A.H. Barbat

The purpose of this paper is to develop an improved analytical model for predicting the damage response of multi‐storey reinforced concrete frames modelled as an elastic…

1356

Abstract

Purpose

The purpose of this paper is to develop an improved analytical model for predicting the damage response of multi‐storey reinforced concrete frames modelled as an elastic beam‐column with two inelastic hinges at its ends.

Design/methodology/approach

The damage is evaluated in the hinges, using the concentrated damage concepts and a new member damage evaluation method for frame members, which leads to a meaningful global damage index of the structure. A numerical procedure for predicting the damage indices of the structures using matrix structural analysis, plastic theory and continuum damage model is also developed. The method is adequate for the prediction of the failure mechanisms.

Findings

Using the proposed framework numerical examples are finally included. From the obtained results, the advantages and limitation of the proposed model are observed.

Originality/value

The numeric model presented is useful to solve multi‐storey reinforced concrete frames using an inexpensive procedure that combines structural finite elements (beams) of low execution cost, with the moment‐curvature constitutive models deriving from classic stress‐strain ones. The proposed techniques give an inexpensive and reliability procedure to model the frame structures.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 September 2018

Niraj Kumar Jha and Udo Nackenhorst

The purpose of this paper is to develop a progressive damage framework to predict the fatigue life of cord-reinforced rubber composite under cyclic loadings. Special attention has…

Abstract

Purpose

The purpose of this paper is to develop a progressive damage framework to predict the fatigue life of cord-reinforced rubber composite under cyclic loadings. Special attention has been paid to failure mechanisms, like cord–rubber interfacial debonding, and rubber matrix damage.

Design/methodology/approach

The constitutive modeling is based on the continuum damage mechanics (CDMs) and the thermodynamics of irreversible process. The damage in rubber is described by an istropic law, whereas elasto-plastic continuum model has been proposed for cord–rubber interphase layer. The numerical framework is implemented into commercial finite element code Abaqus/Standard via user subroutine (UMAT).

Findings

One of the most important findings obtained from reviewing various techniques is that meso-level fatigue damage modeling based on developed framework can simulate competitive damage scenarios, e.g. debonding, delamination or matrix failure.

Originality/value

A systematic framework for predicting failure in cord-reinforced rubber composite is formulated within the context of CDMs that can also be applied for industrial components, such as tires and airsprings.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 September 2018

De-Cheng Feng, Cheng-Dong Yang and Xiao-Dan Ren

This paper aims to present a multi-scale stochastic damage model (SDM) for concrete and apply it to the stochastic response analysis of reinforced concrete shear wall structures.

Abstract

Purpose

This paper aims to present a multi-scale stochastic damage model (SDM) for concrete and apply it to the stochastic response analysis of reinforced concrete shear wall structures.

Design/methodology/approach

The proposed SDM is constructed at two scales, i.e. the macro-scale and the micro-scale. The general framework of the SDM is established on the basis of the continuum damage mechanics (CDM) at the macro-scale, whereas the detailed damage evolution is determined through a parallel fiber buddle model at the micro-scale. The parallel buddle model is made up of micro-elements with stochastic fracture strains, and a one-dimensional random field is assumed for the fracture strain distribution. To represent the random field, a random functional method is adopted to quantify the stochastic damage evolution process with only two variables; thus, the numerical efficiency is greatly enhanced. Meanwhile, the probability density evolution method (PDEM) is introduced for the structural stochastic response analysis.

Findings

By combing the SDM and PDEM, the probabilistic analysis of a shear wall structure is performed. The mean value, standard deviation and the probability density function of the shear wall responses, e.g., shear capacity, accumulated energy consumption and damage evolution, are obtained.

Originality/value

It is noted that the proposed method can reflect the influences of randomness from material level to structural level, and is efficient for stochastic response determination of shear wall structures.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2014

Xue Xinhua, Zhang Wohua and Xingguo Yang

The paper aims to clarify the relationship between the micro-structures of porous media and the coefficient of permeability. Most materials involve different types of defects like…

Abstract

Purpose

The paper aims to clarify the relationship between the micro-structures of porous media and the coefficient of permeability. Most materials involve different types of defects like caves, pores and cracks, which are important characters of porous media and have a great influence on the physical properties of materials. To study the seepage mechanical characteristics of damaged porous media, the constitutive model of porous media dealing with coupled modeling of pores damage and its impact on permeability property of a deforming media was studied in this paper.

Design/methodology/approach

The paper opted for an exploratory study using the approach of continuum damage mechanics (CDM).

Findings

The paper provides some new insights on the fluid dynamics of porous media. The dynamic evolution model of permeability coefficient established in this paper can be used to model the fluid flow problems in damaged porous media. Moreover, the modified Darcy's law developed in this paper is considered to be an extension of the Darcy's law for fluid flow and seepage in a porous medium.

Research limitations/implications

Owing to the limitations of time, conditions, funds, etc., the research results should be subject to multifaceted experiments before their innovative significance can be fully verified.

Practical implications

The paper includes implications for the development of fluid dynamics of porous media.

Originality/value

This paper fulfils an identified need to study the relationship between the micro-structures of porous media and the coefficient of permeability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1997

A.M. Shazali, K. Rahman, M.H. El‐Boghdadi, S.F. Taher and M.H. Baluch

Focuses on a finite element computational model for the Timoshenko beam which is idealized as an elasto‐plastic‐damage medium governed by Lemaitre’s continuum damage mechanics…

Abstract

Focuses on a finite element computational model for the Timoshenko beam which is idealized as an elasto‐plastic‐damage medium governed by Lemaitre’s continuum damage mechanics (CDM) model for ductile fracture. Response under monotonically increasing loading does not show any deviation from elasto‐plastic simulation. However, a marked difference in the residual stress field is noted by virtue of the unloading phase, in which the CDM model allows for stiffness degradation in contrast to classical elasto‐plasticity which requires unloading at the (frozen) initial stiffness of the material.

Details

Engineering Computations, vol. 14 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 583