Search results

1 – 10 of 108
Article
Publication date: 21 November 2018

Lifang Wu, Lidong Zhao, Meng Jian, Yuxin Mao, Miao Yu and Xiaohua Guo

In some three-dimensional (3D) printing application scenarios, e.g., model manufacture, it is necessary to print large-sized objects. However, it is impossible to implement…

1380

Abstract

Purpose

In some three-dimensional (3D) printing application scenarios, e.g., model manufacture, it is necessary to print large-sized objects. However, it is impossible to implement large-size 3D printing using a single projector in digital light processing (DLP)-based mask projection 3D printing because of the limitations of the digital micromirror device chips.

Design/methodology/approach

A multi-projector DLP with energy homogenization (EHMP-DLP) scheme is proposed for large-size 3D printing. First, a large-area printing plane is established by tiling multiple projectors. Second, the projector set’s tiling pattern is obtained automatically, and the maximum printable plane is determined. Third, the energy is homogenized across the entire printable plane by adjusting gray levels of the images input into the projectors. Finally, slices are automatically segmented based on the tiling pattern of the projector set, and the gray levels of these slices are reassigned based on the images of the corresponding projectors.

Findings

Large-area high-intensity projection for mask projection 3D printing can be performed by tiling multiple DLP projectors. The tiled projector output energies can be homogenized by adjusting the images of the projectors. Uniform ultraviolet energy is important for high-quality printing.

Practical implications

A prototype device is constructed using two projectors. The printable area becomes 140 × 210 mm from the original 140 × 110 mm.

Originality/value

The proposed EHMP-DLP scheme enables 3D printing of large-size objects with linearly increasing printing times and high printing precision. A device was established using two projectors to practice the scheme and can easily be extended to larger sizes by using more projectors.

Article
Publication date: 24 August 2023

Kyle Engel, Paul Andrew Kilmartin and Olaf Diegel

The purpose of this study is to explore the synthesis of novel conductive photo-resins to produce flexible conducting composites for use in additive manufacturing. By using direct…

Abstract

Purpose

The purpose of this study is to explore the synthesis of novel conductive photo-resins to produce flexible conducting composites for use in additive manufacturing. By using direct ink writing (DIW) additive manufacturing, this study aims to explore the fabrication of multimaterial devices with conductive and insulating components. Using digital light processing (DLP) additive manufacturing, this study aims to fabricate detailed objects with higher resolution than material extrusion 3D printing systems.

Design/methodology/approach

In this paper, several photocurable conducting resins were prepared for DIW and DLP additive manufacturing. These resins were then cured using 405 nm near UV light to create intrinsically conductive polymer (ICP) composites. The electrochemical properties of these composites were analysed, and the effect of co-monomer choice and crosslinking density was determined. These results determined a suitable resin for subsequent additive manufacture using DIW and DLP. These 3D printing techniques were used to develop flexible conducting devices of submillimetre resolution that were fabricated with unmodified, commercially available 3D printers.

Findings

Cyclic voltammetry and volume conductivity analysis of the conducting resins determined the most conductive resin formula for 3D printing. Conductive devices were fabricated using the two 3D printing techniques. A multimaterial soft conducting device was fabricated using DIW, and each conducting component was insulated from its neighbours. DLP was used to fabricate a soft conducting device with good XY resolution with a minimum feature size of 0.2 mm. All devices were prepared in unmodified commercially available 3D printers.

Practical implications

These findings have value in the development of soft robotics, artificial muscles and wearable sensors. In addition, this work highlights techniques for DIW and DLP additive manufacturing.

Originality/value

Several original conducting resin formulae were developed for use in two 3D printing systems. The resulting 3D-printed composites are soft and flexible while maintaining their conductive properties. These findings are of value to both polymer chemists and to the field of additive manufacturing.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 August 2021

Lifang Wu, Zechao Liu, Yupeng Guan, Kejian Cui, Meng Jian, Yuanyuan Qin, Yandong Li, Feng Yang and Tianqin Yang

This paper aims to address the problem of uncertain product quality in digital light processing (DLP) three-dimensional (3D) printing, a scheme is proposed to qualitatively…

Abstract

Purpose

This paper aims to address the problem of uncertain product quality in digital light processing (DLP) three-dimensional (3D) printing, a scheme is proposed to qualitatively estimate whether a layer is printed with the qualified quality or not cured .

Design/methodology/approach

A thermochromic pigment whose color fades at 45°C is prepared as the indicator and it is mixed with the resin. A visual surveillance framework is proposed to monitor the visual variation in a period of the entire curing process. The exposure region is divided into 30 × 30 sub-regions; gray-level variation curves (curing curves) in all sub-regions are classified as normal or abnormal and a corresponding printing control strategy is designed to improve the percentage of qualified printed objects.

Findings

The temperature variation caused by the releasing reaction heat on the exposure surface is consistent in different regions under the homogenized light intensity. The temperature in depth begins to rise at different times. The temperature in the regions near the light source rises earlier, and that far from the light source rises later. Thus, the color of resin mixed with the thermochromic pigment fades gradually over a period of the entire solidification process. The color variation in the regions with defects of bubbles, insufficient material filling, etc., is much different from that in the normal curing regions.

Originality/value

A temperature-sensitive organic chromatic chemical pigment is prepared to present the visual variation over a period of the entire curing process. A novel 3D printing scheme with visual surveillance is proposed to monitor the layer-wise curing quality and to timely stop the possible unqualified printing resulted from bubbles, insufficient material filling, etc.

Details

Rapid Prototyping Journal, vol. 27 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 30 September 2019

Laura D. Vallejo-Melgarejo, Ronald G. Reifenberger, Brittany A. Newell, Carlos A. Narváez-Tovar and José M. Garcia-Bravo

An Autodesk Ember three-dimensional (3D) printer was used to print optical components from Clear PR48 photocurable resin. The cured PR48 was characterized by the per cent of light…

3593

Abstract

Purpose

An Autodesk Ember three-dimensional (3D) printer was used to print optical components from Clear PR48 photocurable resin. The cured PR48 was characterized by the per cent of light transmitted and the index of refraction, which was measured with a prism spectrometer. Lenses and diffraction gratings were also printed and characterized. The focal length of the printed lenses agreed with predictions based on the thin lens equation. The periodicity and effective slit width of the printed gratings were determined from both optical micrographs and fits to the Fraunhofer diffraction equation. This study aims to demonstrate the advantages offered by a layer-by-layer DLP printing process for the manufacture of optical components for use in the visible region of the electromagnetic spectrum.

Design/methodology/approach

A 3D printer was used to print both lenses and diffraction gratings from Standard Clear PR48 photocurable resin. The manufacturing process of the lenses and the diffraction gratings differ mainly in the printing angle with respect to the printer x-y-axes. The transmission diffraction gratings studied here were manufactured with nominal periodicities of 10, 25 and 50 µm. The aim of this study was to optically determine the effective values for the distance between slits, d, and the effective width of the slits, w, and to compare these values with the printed layer thickness.

Findings

The normalized diffraction patterns measured in this experiment for the printed gratings with layer thickness of 10, 25 and 50 µm are shown by the solid dots in Figures 8(a)-(c). Also shown as a red solid line are the fits to the experimental diffraction data. The effective values of d and w obtained from fitting the data are compared to the nominal layer thickness of the printed gratings. The effective distance between slits required to fit the diffraction patterns are well approximated by the printed layer thickness to within 14, 4 and 16 per cent for gratings with a nominal 10, 25 and 50 µm layer thickness, respectively.

Research limitations/implications

Chromatic aberration is present in all polymer lenses, and the authors have not attempted to characterize it in this study. These materials could be used for achromatic lenses if paired with a crown-type material in an achromatic doublet configuration, because this would correct the chromatic aberration issues. It is worthwhile to compare the per cent transmission in cured PR48 resin (approximately 80 per cent) to the percent transmission found in common optical materials like BK7 (approximately 92 per cent) over the visible region. The authors attribute the lower transmission in PR48 to a combination of surface scattering and increased absorption. At the present time, the authors do not know what fraction of the lower transmission is related to the surface quality resulting from sample polishing.

Practical implications

There are inherent limitations to the 3D manufacturing process that affect the performance of lenses. Approximations to a curved surface in the design software, the printing resolution of the Autodesk Ember printer and the anisotropy due to printing in layers are believed to be the main issues. The performance of the lenses is also affected by internal imperfections in the printed material, in particular the presence of bubbles and the inclusion of debris like dust or fibers suspended in air. In addition, the absorption of wavelengths in the blue/ultraviolet produces an undesirable yellowing in any printed part.

Originality/value

One of the most interesting results from this study was the manufacture of diffraction gratings using 3D printing. An analysis of the diffraction pattern produced by these printed gratings yielded estimates for the slit periodicity and effective slit width. These gratings are unique because the effective slit width fills the entire volume of the printed part. This aspect makes it possible to integrate two or more optical devices in a single printed part. For example, a lens combined with a diffraction grating now becomes possible.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 April 2024

Saadet Güler, Ahmet Yavaş, Berk Özler and Ahmet Çagri Kilinç

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed

Abstract

Purpose

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed photocatalyst-nano composite lattice structure. Digital light processing (DLP) 3D printing of photocatalyst composites was performed using photosensitive resin mixed with 0.5% Wt. of TiO2 powder and varying amounts (0.025% Wt. to 0.2% Wt.) of graphene nanoplatelet powder. The photocatalytic efficiency of DLP 3D-printed photocatalyst TiO2 composite was investigated, and the effects of nano graphite powder incorporation on the photocatalytic activity, thermal and mechanical properties were investigated.

Design/methodology/approach

Methods involve 3D computer-aided design modeling, printing parameters and comprehensive characterization techniques such as structural equation modeling, X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared (FTIR) and mechanical testing.

Findings

Results highlight successful dispersion and characteristics of TiO2 and graphene nanoplatelet (GNP) powders, intricate designs of 3D-printed lattice structures, and the influence of GNPs on thermal behavior and mechanical properties.

Originality/value

The study suggests applicability in wastewater treatment and environmental remediation, showcasing the adaptability of 3 D printing in designing effective photocatalysts. Future research should focus on practical applications and the long-term durability of these 3D-printed composites.

Graphical abstract

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 September 2023

Shamima Khatoon and Gufran Ahmad

The hygroscopic properties of 3D-printed filaments and moisture absorption itself during the process result in dimensional inaccuracy, particularly for nozzle movement along the…

Abstract

Purpose

The hygroscopic properties of 3D-printed filaments and moisture absorption itself during the process result in dimensional inaccuracy, particularly for nozzle movement along the x-axis and for micro-scale features. In view of that, this study aims to analyze in depth the dimensional errors and deviations of the fused filament fabrication (FFF)/fused deposition modeling (FDM) 3D-printed micropillars (MPs) from the reference values. A detailed analysis into the variability in printed dimensions below 1 mm in width without any deformations in the printed shape of the designed features, for challenging filaments like polymethyl methacrylate (PMMA) has been done. The study also explores whether the printed shape retains the designed structure.

Design/methodology/approach

A reference model for MPs of width 800 µm and height 2,000 µm is selected to generate a g-code model after pre-processing of slicing and meshing parameters for 3D printing of micro-scale structure with defined boundaries. Three SETs, SET-A, SET-B and SET-C, for nozzle diameter of 0.2 mm, 0.25 mm and 0.3 mm, respectively, have been prepared. The SETs containing the MPs were fabricated with the spacing (S) of 2,000 µm, 3,200 µm and 4,000 µm along the print head x-axis. The MPs were measured by taking three consecutive measurements (top, bottom and middle) for the width and one for the height.

Findings

The prominent highlight of this study is the successful FFF/FDM 3D printing of thin features (<1mm) without any deformation. The mathematical analysis of the variance of the optical microscopy measurements concluded that printed dimensions for micropillar widths did not vary significantly, retaining more than 65% of the recording within the first standard deviation (SD) (±1 s). The minimum value of SD is obtained from the samples of SET-B, that is, 31.96 µm and 35.865 µm, for height and width, respectively. The %RE for SET-B samples is 5.09% for S = 2,000µm, 3.86% for S = 3,200µm and 1.09% for S = 4,000µm. The error percentage is so small that it could be easily compensated by redesigning.

Research limitations/implications

The study does not cover other 3D printing techniques of additive manufacturing like stereolithography, digital light processing and material jetting.

Practical implications

The presented study can be potentially implemented for the rapid prototyping of microfluidics mixer, bioseparator and lab-on-chip devices, both for membrane-free bioseparation based on microfiltration, plasma extraction from whole blood, size-selection trapping of unwanted blood cells, and also for membrane-based plasma extraction that requires supporting microstructures. Our developed process may prove to be far more economical than the other existing techniques for such applications.

Originality/value

For the first time, this work presents a comprehensive analysis of the fabrication of micropillars using FDM/FFF 3D printing and PMMA in filament form. The primary focus of the study is to minimize the dimensional inaccuracies in the 3D printed devices containing thin features, especially in the area of biomedical engineering, by delivering benefits from the choice of the parameters. Thus, on the basis of errors and deviations, a thorough comparison of the three SETs of the fabricated micropillars has been done.

Article
Publication date: 28 January 2020

Yuan-Min Lin, Hsuan Chen, Chih-Hsin Lin, Pin-Ju Huang and Shyh-Yuan Lee

The purpose of this study is to develop resin composite materials composed of polycaprolactone (PCL) acrylates and hydroxyapatite (HA) nanoparticles for ultraviolet digital light…

Abstract

Purpose

The purpose of this study is to develop resin composite materials composed of polycaprolactone (PCL) acrylates and hydroxyapatite (HA) nanoparticles for ultraviolet digital light projection (DLP) three-dimensional (3D) printing technique.

Design/methodology/approach

Two PCL-based triacrylates, namely, glycerol-3 caprolactone-triacrylate (Gly-3CL-TA) and glycerol-6 caprolactone-triacrylate (Gly-6CL-TA) were synthesized from ring-opening polymerization of ε-caprolacton monomer in the presence of glycerol and then acrylation was performed using acryloyl chloride. 3D printing resins made of Gly-3CL-TA or Gly-6CL-TA, 5% HA and 3% of photoinitiator 2,4,6-Trimethylbenzoyl-diphenyl-phosphineoxide were then formulated. The surface topography, surface element composition, flexural strength, flexural modulus, cytotoxicity and degradation of the PCL-based scaffolds were then characterized.

Findings

Resin composite composed of Gly-3CL-TA or Gly-6CL-TA and 5% (w/w) of HA can be printed by 405 nm DLP 3D printers. The former has lower viscosity and thus can form a more uniform layer-by-layer structure, while the latter exhibited a higher flexural strength and modulus after being printed. Both composite materials are non-cytotoxic and degradable.

Originality/value

This study provides a direction of the formulation of environment-friendly resin composite for DLP 3D printing. Both resin composites have huge potential in tissue engineering applications.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 October 2022

Kyle Engel, Paul Andrew Kilmartin and Olaf Diegel

The purpose of this study is to develop a additive manufacturing (AM) process for the fabrication of ionic polymer–metal composite (IPMC) devices with complex designs that would…

Abstract

Purpose

The purpose of this study is to develop a additive manufacturing (AM) process for the fabrication of ionic polymer–metal composite (IPMC) devices with complex designs that would be time-consuming to replicate using conventional manual methods. These IPMC devices have considerable potential in electroactive polymers (EAPs) and soft actuators.

Design/methodology/approach

This paper presents a novel three–dimensional (3D) AM technique to develop IPMCs. Digital light processing (DLP) fabrication of soft EAPs was undertaken using a vat-based AM method, followed by deposition of cost-effective outer silver electrodes.

Findings

DLP-fabricated devices were compared to conventional Nafion™-117 devices. DLP layer-by-layer fabrication of these devices allowed for good resolution for a range of printed objects. Electrical actuation of the DLP-produced IPMCs showed tip displacements of up to 3 mm, and greater actuation was seen in the presence of lithium rather than magnesium cations. The IMPCs showed good ion exchange capacities, while electrochemical analysis showed the reversible formation and removal of AgCl layers in addition to ion movement.

Practical implications

The AM of these devices allows for rapid prototyping as well as potential use in the development of multiple degrees of freedom actuators and devices.

Originality/value

An original resin formulation was developed for DLP 3D printing. This formula is chemically distinct from the conventional Nafion™-117 membranes that can be purchased. Additionally, this method allows for the manufacture of complex objects that would be difficult to machine by hand. These findings are of value to both the fields of polymer chemistry and AM.

Article
Publication date: 16 August 2023

Ashish Kaushik and Ramesh Kumar Garg

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the…

Abstract

Purpose

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the characteristics of the materials, which are essential in determining their clinical efficacy when exposed to oral surroundings.

Design/methodology/approach

A collective analysis of published articles covering the use of rapid prototyping technologies in the fabrication of occlusal splints, including manufacturing workflow description and essential properties (mechanical- and thermal-based) evaluation of biocompatible splinting materials, was performed.

Findings

Without advances in rapid prototyping processes and materials engineering, occlusal splints would tend to underperform clinically due to biomechanical limitations.

Social implications

Three-dimensional printing can improve the process capabilities for commercial customization of biomechanically efficient occlusal splints.

Originality/value

Rapid technological advancement in dentistry with the extensive utilization of rapid prototyping processes, intra-oral scanners and novel biomaterial seems to be the potential breakthrough in the fabrication of customized occlusal splints which have endorsed occlusal splint therapy (OST) as a cornerstone of orthodontic treatment.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 March 2022

Harshit K. Dave, Ravi Teja Karumuri, Ashish R. Prajapati and Shilpesh R. Rajpurohit

Liquid crystal display (LCD)-based stereolithography (SLA) technique has been used in drug delivery and fabrication of microfluidic devices and piezoelectric materials. It is an…

Abstract

Purpose

Liquid crystal display (LCD)-based stereolithography (SLA) technique has been used in drug delivery and fabrication of microfluidic devices and piezoelectric materials. It is an additive manufacturing technique where an LCD source has been used as a mask to project the image onto the tank filled with photo curable resin. This resin, when interacted with light, becomes solid. However, critical information regarding the energy absorption during the compression analysis of different components three-dimensional (3D) printed by SLA process is still limited. Therefore, this study aims to investigate the effect of different process parameters on the compressive properties.

Design/methodology/approach

In the present study, the influence of layer thickness, infill density and build orientation on the compression properties is investigated. Four infill densities, that is, 20%, 40%, 60% and 80%; five-layer thicknesses, that is, 50 µm, 75 µm, 100 µm, 150 µm and 200 µm; and two different orientations, that is, YXZ and ZXY, have been selected for this study.

Findings

It is observed that the samples printed with acrylonitrile butadiene styrene (ABS) absorbed higher energy than the flexible polyurethane (FPU). Higher infill density and sample oriented on ZXY absorbed higher energy than sample printed on YXZ orientation, in both the ABS and FPU materials. Parts printed with 80% infill density and 200 µm layer thickness resulted into maximum energy for both the materials.

Originality/value

In this study, two different types of materials are used for the compression analysis using LCD-SLA-based 3D printer. Specific energy absorbed by the samples during compression testing is measured to compare the influence of parameters. The investigation of infill parameters particularly the infill density is very limited for the SLA-based 3D printing process. Also, the results of this study provide a database to select the print parameters to obtain the required properties. The results also compare the specific energy for hard and flexible material for the same combination of the process parameters.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 108