Search results

1 – 10 of over 3000
Article
Publication date: 4 December 2019

N.S. Suresh, Manish Kumar and S. Arul Daniel

The researchers and policy makers worldwide have proposed many ideas for smart cities and homes in urban areas. The extensive work done for urban smart homes neglects the unique…

162

Abstract

Purpose

The researchers and policy makers worldwide have proposed many ideas for smart cities and homes in urban areas. The extensive work done for urban smart homes neglects the unique constraints of homes at remote mountain tops and deserts and rural village homes. The purpose of this paper is to propose a smart energy management system for a self-sustained home of any type situated in any geographical location with the availability of renewable energy sources like solar, etc. The purpose is mainly to highlight the importance and advantages of direct current (DC) homes with DC loads rather than a conventional alternating current (AC) home with both AC and DC loads. An attempt has been made to evolve a multi-agent coordinated control for the low voltage direct current (LVDC) smart home system.

Design/methodology/approach

LVDC supply systems with in situ power generation are providing an efficient solution for the energy needs of a DC smart home. The individual sub-systems of the LVDC system have their unique functions and priorities and hence require both coordinated and independent control. The entire DC smart home system is modeled in the Matlab and codes are implemented for each agent of the home. LVDC grid is operating either in battery connected mode or utility grid-connected mode, and the DC link voltage is held constant in both the cases. Energy imported from the utility grid is minimized by load shedding during the rectifier mode of the bidirectional converter. In addition, load shedding is also done when the battery is discharging to increase the discharge time of the battery. Load shedding is done on the basis of a fixed priority of loads. A 48 s simulation is performed on the Matlab model to bring out the 24-hour operation of the proposed system. Various modes are simulated and the corresponding actions of the agents are tested.

Findings

A new control strategy with agents for each sub-system of the LVDC system is presented. Each individual agent works in tandem with other agents and meets its own control imperatives without compromising the requirements of the overall system. Unlike the centralized control system, the proposed control strategy is a distributed control system. The control algorithm for each of the agents is developed, and the pseudo code is presented. The results of the simulation of the proposed scheme are presented to confirm the usefulness of the new control approach.

Originality/value

The multi-agent concept for an energy management system is less addressed and thus its potential for efficient home energy management is presented. The proposed multi-agent strategy for a complete DC smart home with exclusive DC loads is not done earlier and is reported for the first time. The success of this strategy can be extended to other DC micro-grid systems like telecom power systems, ships, aircraft, datacentres, server rooms, residential complexes and commercial malls.

Details

Smart and Sustainable Built Environment, vol. 9 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 3 January 2017

Kosei Shinoda, Xavier Guillaud, Seddik Bacha, Abdelkrim Benchaib and Bruno Francois

Self-commuted voltage source converter (VSC) can significantly extend the flexibility and operability of an HVDC system and be used to implement the concept of multi-terminal HVDC…

Abstract

Purpose

Self-commuted voltage source converter (VSC) can significantly extend the flexibility and operability of an HVDC system and be used to implement the concept of multi-terminal HVDC (MTDC) grid. To take full advantage of MTDC systems, its overall behaviour must be characterized in quasi static and dynamic states. Based on the numerous literatures, a dedicated two-level VSC model and its local controllers and DC grid voltage regulators are developed for this purpose. Furthermore, the requirement of the system to guarantee all the physical constrains must be well assessed and concrete demonstrations must be provided by numerical simulations.

Design/methodology/approach

First, a two-level VSC model and its local controllers and DC grid voltage regulators are developed. Then, DC cable models are investigated and their characteristics are assessed in the frequency domain. Those developed models are combined to form a three-terminal HVDC grid system on Matlab/Simulink platform. To analyze the stability of this electrical system, the dynamics of the system against variations of power dispatch are observed.

Findings

To analyze the stability of this electrical system, the dynamics of the system against variations of power dispatch are observed. The differences in the DC grid voltage dynamics and the power flow of the converter stations coming from the embedded primary controls are analysed, and the technical requirements for both cases are assessed.

Originality/value

In this paper, the dynamic stability of an MTDC system has been analysed and assessed through an adequate simulation model, including its control scheme and the cable models. The interest of the improved PI model for cables is highlighted.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 November 2008

Sotirios B. Skretas, Demetrios P. Papadopoulos and S.N. Singh

The purpose of this paper is to present a systematic design procedure along with modeling and simulation of a medium‐scale centralized dc‐bus grid connected hybrid (wind turbine…

Abstract

Purpose

The purpose of this paper is to present a systematic design procedure along with modeling and simulation of a medium‐scale centralized dc‐bus grid connected hybrid (wind turbine (WT) and photovoltaic (PV)) power system (GCHWPPS) for supplying electric power to a three‐phase medium voltage distribution grid.

Design/methodology/approach

The design, modeling, simulation and control of the GCHWPPS are achieved by using Simulink/MATLAB environment.

Findings

The case study shows that the proposed system configuration along with the suggested control schemes achieve rapidly, accurately, stably and simultaneously four objectives, i.e. maximum power point tracking of WT and photovoltaic generator, dc voltage regulation/stabilization at the input of the inverter, and high electric power quality injected into the grid from the inverter, fulfilling all necessary practical interconnection requirements while providing additional load power factor correction.

Originality/value

An effective intelligent dynamic control method is used to a proposed GCHWPPS configuration to simultaneously achieve the four mentioned practical objectives while meeting the grid requirements.

Details

International Journal of Energy Sector Management, vol. 2 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 10 September 2018

Yuvaraja T. and K. Ramya

The purpose of studying the low voltage direct current (DC) microgrid, which uses computerised control system techniques, an orderly coordination control stratagem considering…

Abstract

Purpose

The purpose of studying the low voltage direct current (DC) microgrid, which uses computerised control system techniques, an orderly coordination control stratagem considering optimisation of a hybrid energy storage system (HESS) was projected in this paper.

Design/methodology/approach

The projected control stratagem was divided into three levels: topmost power dispatch level, transitional bus voltage regulation level and bottommost converter control level.

Findings

At the topmost power dispatch level, the cost of system stability was introduced, which is related with state of charge and discharging power of HESS.

Originality/value

Furthermore, the cost of system stability and HESS depreciation was compared with commercial price, and HESS switches its operating mode to discharge more at higher price or charge more at lower price to ensure the DC microgrid in economic operation. At the transitional bus voltage regulation level, DC bus gesturing is used as a control signal to achieve an autonomous decentralised operation of DC microgrid. The Matlab/Simulink simulation inveterate that the economical and autonomous decentralised operation can be achieved through the control stratagem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Amira Marzouki, Mahmoud Hamouda and Farhat Fnaiech

The purpose of this paper is to propose a new hybrid control method of pulse width modulation (PWM) active rectifiers tied to the grid through an LCL filter. The control method is…

Abstract

Purpose

The purpose of this paper is to propose a new hybrid control method of pulse width modulation (PWM) active rectifiers tied to the grid through an LCL filter. The control method is designed with the aim to achieve a perfect regulation of the dc-bus voltage; a near unity input power factor (UIPF) operation as well as a high quality of the line currents.

Design/methodology/approach

The proposed hybrid control method consists of a PI-based linear controller cascaded with a nonlinear one. The nonlinear controller (inner loop) is designed using the input-output feedback linearization (IOFL) theory. It should control both the dc-bus voltage and the input currents at the converter’s poles. The linear controller (outer loop) is devoted to control the reactive line current so as to achieve a near UIPF.

Findings

A perfect regulation of the dc-bus voltage and a near UIPF operation are achieved. Moreover, a high quality of the line currents is obtained. The robustness and effectiveness of the proposed control method have been successfully tested under variation of the dc voltage reference as well as grid and load disturbances.

Practical implications

The proposed method is useful for single-stage and two-stage grid connected photovoltaic systems, wind energy conversion, and distributed power generation systems.

Originality/value

The main novelty of this paper is the combination of linear and nonlinear controllers with the aim to control a PWM active rectifier tied to the grid through a third-order LCL filter. In the opinion, such control method has not been applied to this converter in earlier research papers. The numerical simulations carried out under normal and abnormal conditions confirm the effectiveness of the proposed approach.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 February 2021

Houda Laabidi, Houda Jouini and Abdelkader Mami

The purpose of this paper is to propose an efficient current control technique based on model predictive control (MPC) for grid-connected wind conversion system. This nonlinear…

63

Abstract

Purpose

The purpose of this paper is to propose an efficient current control technique based on model predictive control (MPC) for grid-connected wind conversion system. This nonlinear strategy is applied for the chopper circuit and grid-tied inverter and compared with other two conventional schemes; a traditional proportional-integral (PI) and sliding mode controller (SMC) using the same switching frequency.

Design/methodology/approach

Firstly, the MPC scheme uses the mathematical model to predict future behaviors of the controlled converter outputs for possible switching states. After that, the optimal voltage vector is selected by minimizing a cost function, which is defined as a sum of the absolute values of the controlled current errors. Then, the corresponding switching signals are applied to the converter switches in the next sampling period to track correctly the reference current. Thus, the MPC scheme ensures a minimal error between the predicted and reference trajectories of the considered variables.

Findings

The MPC-based algorithm presents several benefits in terms of high accuracy control, reduced DC-link voltage ripples during steady-state operation, faster transient response, lower overshoots and disturbance rejection and acceptable total harmonic distortion.

Originality/value

The authors introduce several simulation case studies, using PSIM software package, which prove the reliability and effectiveness of the proposed MPC scheme. Therefore, the MPC performances, during dynamic and steady-state condition, are compared with those obtained by a PI regulator and SMC to highlight the improvements, specifically the transfer of smooth power to the grid.

Article
Publication date: 4 August 2022

Biranchi Narayan Kar, Paulson Samuel, Jatin Kumar Pradhan and Amit Mallick

This paper aims to present an improvement to the power quality of the grid by using a colliding body optimization (CBO) based proportional-integral (PI) compensated design for a…

Abstract

Purpose

This paper aims to present an improvement to the power quality of the grid by using a colliding body optimization (CBO) based proportional-integral (PI) compensated design for a grid-connected solar photovoltaic-fed brushless DC motor (BLDC)-driven water pumping system with a bidirectional power flow control. The system with bidirectional power flow allows driving the pump at full proportions uninterruptedly irrespective of the weather conditions and feeding a grid when water pumping is not required.

Design/methodology/approach

Here, power quality issue is taken care of by the optimal generation of the duty cycle of the voltage source converter. The duty cycle is optimally generated by optimal selection of the gains of the current controller (i.e. PI), with the CBO technique resulting in a nearly unity power factor as well as lower total harmonic distortion (THD) of input current. In the CBO technique, the gains of the PI controller are considered as agents and collide with each other to obtain the best value. The system is simulated using MATLAB/Simulink and validated in real time with OPAL RT simulator, OP5700.

Findings

It was found that the power quality of grid using the CBO technique has improved much better than the particle swarm optimization and Zeigler–Nichols approach. The bidirectional flow of control of VSC allowed for optimum resource utilization and full capacity of water pumping whatever may be weather conditions.

Originality/value

Improved power quality of grid by optimally generation of the duty cycle for the proposed system. A unit vector tamplate generation technique is used for bidirectional power transfer.

Article
Publication date: 5 March 2018

Mohammad Maalandish, Seyed Hossein Hosseini, Mehran Sabahi and Pouyan Asgharian

The main purpose of this paper is to select appropriate voltage vectors in the switching techniques and, by selecting the proper voltage vectors, be able to achieve a DC link with…

Abstract

Purpose

The main purpose of this paper is to select appropriate voltage vectors in the switching techniques and, by selecting the proper voltage vectors, be able to achieve a DC link with the same outputs and a symmetric multi-level inverter.

Design/methodology/approach

The proposed structure, a two-stage DC–AC symmetric multi-level inverter with modified Model Predictive Control (MMPC) method, is presented for Photovoltaic (PV) applications. The voltage of DC-link capacitors of the boost converter is controlled by MMPC control method to select appropriate switching vectors for the multi-level inverter. The proposed structure is provided for single-phase power system, which increases 65 V input voltage to 220 V/50 Hz output voltage, with 400 V DC link. Simulation results of proposed structure with MMPC method are carried out by PSCAD/EMTDC software.

Findings

Based on the proposed structure and control method, total harmonic distortion (THD) reduces, which leads to lower power losses and higher circuit reliability. In addition, reducing the number of active switches in current path causes to lower voltage stress on the switches, lower PV leakage current and higher overall efficiency.

Originality/value

In the proposed structure, a new control method is presented that can make a symmetric five-level voltage with lower THD by selecting proper switching for PV applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2021

Suresh Krishnan, Pothuraju Pandi and Subbarao Mopidevi

This paper aims to propose a bidirectional hidden converter (BHC)-based three-phase DC–AC conversion for energy storage application. BHC is the new concept to vary an energy…

Abstract

Purpose

This paper aims to propose a bidirectional hidden converter (BHC)-based three-phase DC–AC conversion for energy storage application. BHC is the new concept to vary an energy storage device voltage into wide range. Hidden converter power loss and power rating are reduced by using zero-sequence injection-based carrier-based pulse-width modulation (CBPWM) strategy.

Design/methodology/approach

By using this control strategy, a BHC processes only little amount of power during double-stage conversion, mostly during direct or single-stage conversion of the three-phase three-port converter (TPTPC) only processing the maximum power.

Findings

TPTPC consists of two sets of positive group switches for inversion process, one set of switches is regular inverter switches called vertical positive group switches, and the second set is anti-series switches, which are horizontally connected for direct or single-stage conversion.

Originality/value

Characteristics, principles and implementations of proposed DC–AC 3Ø conversion system and its PWM strategy are analyzed. Through experimental outputs, the effectiveness and viability of the proposed solutions are validated.

Article
Publication date: 11 June 2018

Shubhranshu Mohan Parida, Subhashree Choudhury, Pravat Kumar Rout and Sanjeeb Kumar Kar

The purpose of this paper is to propose a novel self-adjusting proportional integral (SA-PI) controller, for controlling the active and reactive power of permanent magnet…

Abstract

Purpose

The purpose of this paper is to propose a novel self-adjusting proportional integral (SA-PI) controller, for controlling the active and reactive power of permanent magnet synchronous generator (PMSG) when subjected to variable wind speed and parameter variations.

Design/methodology/approach

The proportional and integral gains of the proposed SA-PI controller are based on tan-hyperbolic function and adjust themselves automatically within pre-fixed limits according to the error occurring during transient situations.

Findings

The proposed SA-PI controller is able to evade the problems usually encountered while using a constant gain PI controller, such as lack of robustness, adaptability and a wide range of operation. It also damps out system oscillations faster with reduced settling time and fewer overshoots.

Originality/value

Simulation results and comparative studies with conventional PI controller and the differential evolution–optimized PI (DE-PI) controller reveal the effectiveness of the proposed control scheme. MATLAB is used to perform the simulation studies.

Details

World Journal of Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 3000