Search results

1 – 10 of 91
Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 1 February 2023

Rahabhi Mashapure, Brighton Nyagadza, Lovemore Chikazhe, Gideon Mazuruse and Precious Hove

The main purpose of this research is to investigate factors influencing rural women entrepreneurship development and sustainable rural livelihoods in Manicaland province of…

13280

Abstract

Purpose

The main purpose of this research is to investigate factors influencing rural women entrepreneurship development and sustainable rural livelihoods in Manicaland province of Zimbabwe.

Design/methodology/approach

A quantitative research was conducted in Manicaland province in Zimbabwe. Data were collected through structured questionnaires from 400 women entrepreneurs in various sectors. The participants were in vegetable vending, operating clothing flea markets and cross border trading. A self-administered structured questionnaire was used to collect data from respondents. Structural equation modeling in SmartPLS version 3 was used to test the research hypotheses.

Findings

The study established that women entrepreneurship is driven by financial factors, positive environmental factors, positive psychological factors as well as positive sociological factors for a sustainable rural livelihood.

Research limitations/implications

It is clear that if the discovered challenges are not addressed, sustainability of women entrepreneurship will remain a dream.

Practical implications

The study came up with strategies for improving women entrepreneurship activities. Future research can be done in other areas of provinces to avoid generalization challenges.

Social implications

Many challenges hinder the sustainability of women entrepreneurship. Major impediments to women entrepreneurship comprises inadequate support from government schemes, patriarchal societal structure of the community, lack of relevant entrepreneurial knowledge to manage businesses, lack of collateral security to access funding, time limitation or role conflict to balance family pressures and business.

Originality/value

The study recommends proper entrepreneurship education and training, supportive government schemes and access to network affiliation/connection to sustain women entrepreneurship.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 4
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 4 July 2023

Jantanee Dumrak and Seyed Ashkan Zarghami

The purpose of this article is to analyze the existing studies on the application of artificial intelligence (AI) in lean construction management (LCM). Further, this study offers…

Abstract

Purpose

The purpose of this article is to analyze the existing studies on the application of artificial intelligence (AI) in lean construction management (LCM). Further, this study offers a classification scheme that specifies different categories of AI tools, as applied to the field of LCM to support various principles of LCM.

Design/methodology/approach

This research adopts the systematic literature review (SLR) process, which consists of five consecutive steps: planning, searching, screening, extraction and synthesis and reporting. As a supplement to SLR, a bibliometric analysis is performed to examine the quantity and citation impact of the reviewed papers.

Findings

In this paper, seven key areas related to the principles of LCM for which AI tools have been used are identified. The findings of this research clarify how AI can assist in bolstering the practice of LCM. Further, this article presents directions for the future evolution of AI tools in LCM based on the current emerging trends.

Practical implications

This paper advances the LCM systems by offering a lens through which construction managers can better understand key concepts in the linkage of AI to LCM.

Originality/value

This research offers a new classification scheme that allows researchers to properly recall, identify and group various applications of AI categories in the construction industry based on various principles of LCM. In addition, this study provides a source of references for researchers in the LCM discipline, which advances knowledge and facilitates theory development in the field.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 September 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Pierluigi Siano and Jorge Pomares

Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are…

Abstract

Purpose

Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. Unlike conventional synchronous motors, permanent magnet synchronous spherical motors consist of a fixed inner shell, which is the stator, and a rotating outer shell, which is the rotor. Their dynamic model is multivariable and strongly nonlinear. The treatment of the associated control problem is important.

Design/methodology/approach

In this paper, the multivariable dynamic model of permanent magnet synchronous spherical motors is analysed, and a nonlinear optimal (H-infinity) control method is developed for it. Differential flatness properties are proven for the spherical motors’ state-space model. Next, the motors’ state-space description undergoes approximate linearization with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. The linearization process takes place at each sampling instance around a time-varying operating point, which is defined by the present value of the motors’ state vector and by the last sampled value of the control input vector. For the approximately linearized model of the permanent magnet synchronous spherical motors, a stabilizing H-infinity feedback controller is designed. To compute the controller’s gains, an algebraic Riccati equation has to be repetitively solved at each time-step of the control algorithm. The global stability properties of the control scheme are proven through Lyapunov analysis. Finally, the performance of the nonlinear optimal control method is compared against a flatness-based control approach implemented in successive loops.

Findings

Due to the nonlinear and multivariable structure of the state-space model of spherical motors, the solution of the associated nonlinear control problem is a nontrivial task. In this paper, a novel nonlinear optimal (H-infinity) control approach is proposed for the dynamic model of permanent magnet synchronous spherical motors. The method is based on approximate linearization of the motor’s state-space model with the use of first-order Taylor series expansion and the computation of the associated Jacobian matrices. Furthermore, the paper has introduced a different solution to the nonlinear control problem of the permanent magnet synchronous spherical motor, which is based on flatness-based control implemented in successive loops.

Research limitations/implications

The presented control approaches do not exhibit any limitations, but on the contrary, they have specific advantages. In comparison to global linearization-based control schemes (such as Lie-algebra-based control), they do not make use of complicated changes of state variables (diffeomorphisms) and transformations of the system's state-space description. The computed control inputs are applied directly to the initial nonlinear state-space model of the permanent magnet spherical motor without the intervention of inverse transformations and thus without coming against the risk of singularities.

Practical implications

The motion control problem of spherical motors is nontrivial because of the complicated nonlinear and multivariable dynamics of these electric machines. So far, there have been several attempts to apply nonlinear feedback control to permanent magnet-synchronous spherical motors. However, due to the model’s complexity, few results exist about the associated nonlinear optimal control problem. The proposed nonlinear control methods for permanent magnet synchronous spherical motors make more efficient, precise and reliable the use of such motors in robotics, electric traction and several automation systems.

Social implications

The treated research topic is central for robotic and industrial automation. Permanent magnet synchronous spherical motors are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. The solution of the control problem for the nonlinear dynamic model of permanent magnet synchronous spherical motors has many industrial applications and therefore contributes to economic growth and development.

Originality/value

The proposed nonlinear optimal control method is novel compared to past attempts to solve the optimal control problem for nonlinear dynamical systems. Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation which is used for computing the feedback gains of the controller is new, and so is the global stability proof for this control method. Compared to nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed into the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes, which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. Furthermore, the second control method proposed in this paper, which is flatness-based control in successive loops, is also novel and demonstrates substantial contribution to nonlinear control for robotics and industrial automation.

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 February 2024

Gerasimos G. Rigatos, Pierluigi Siano, Mohammed S. Al-Numay, Bilal Sari and Masoud Abbaszadeh

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet…

Abstract

Purpose

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet synchronous motors and five-phase asynchronous induction motors (IMs) are among the types of multiphase motors one can consider for the traction system of electric vehicles (EVs). By distributing the required power in a large number of phases, the power load of each individual phase is reduced. The cumulative rates of power in multiphase machines can be raised without stressing the connected converters. Multiphase motors are also fault tolerant because such machines remain functional even if failures affect certain phases.

Design/methodology/approach

A novel nonlinear optimal control approach has been developed for five-phase IMs. The dynamic model of the five-phase IM undergoes approximate linearization using Taylor series expansion and the computation of the associated Jacobian matrices. The linearization takes place at each sampling instance. For the linearized model of the motor, an H-infinity feedback controller is designed. This controller achieves the solution of the optimal control problem under model uncertainty and disturbances.

Findings

To select the feedback gains of the nonlinear optimal (H-infinity) controller, an algebraic Riccati equation has to be solved repetitively at each time-step of the control method. The global stability properties of the control loop are demonstrated through Lyapunov analysis. Under moderate conditions, the global asymptotic stability properties of the control scheme are proven. The proposed nonlinear optimal control method achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs.

Research limitations/implications

Comparing to other nonlinear control methods that one could have considered for five-phase IMs, the presented nonlinear optimal (H-infinity) control approach avoids complicated state-space model transformations, is of proven global stability and its use does not require the model of the motor to be brought into a specific state-space form. The nonlinear optimal control method has clear implementation stages and moderate computational effort.

Practical implications

In the transportation sector, there is progressive transition to EVs. The use of five-phase IMs in EVs exhibits specific advantages, by achieving a more balanced distribution of power in the multiple phases of the motor and by providing fault tolerance. The study’s nonlinear optimal control method for five-phase IMs enables high performance for such motors and their efficient use in the traction system of EVs.

Social implications

Nonlinear optimal control for five-phase IMs supports the deployment of their use in EVs. Therefore, it contributes to the net-zero objective that aims at eliminating the emission of harmful exhaust gases coming from human activities. Most known manufacturers of vehicles have shifted to the production of all-electric cars. The study’s findings can optimize the traction system of EVs thus also contributing to the growth of the EV industry.

Originality/value

The proposed nonlinear optimal control method is novel comparing to past attempts for solving the optimal control problem for nonlinear dynamical systems. It uses a novel approach for selecting the linearization points and a new Riccati equation for computing the feedback gains of the controller. The nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 June 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Fabrizio Marignetti and Pierluigi Siano

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as…

Abstract

Purpose

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion). The dynamic model of VSI-PMSMs is multivariable and exhibits complicated nonlinear dynamics. The inverters’ currents, which are generated through a pulsewidth modulation process, are used to control the stator currents of the PMSM, which in turn control the rotational speed of this electric machine. So far, several nonlinear control schemes for VSI-PMSMs have been developed, having as primary objectives the precise tracking of setpoints by the system’s state variables and robustness to parametric changes or external perturbations. However, little has been done for the solution of the associated nonlinear optimal control problem. The purpose of this study/paper is to provide a novel nonlinear optimal control method for VSI-fed three-phase PMSMs.

Design/methodology/approach

The present article proposes a nonlinear optimal control approach for VSI-PMSMs. The nonlinear dynamic model of VSI-PMSMs undergoes approximate linearization around a temporary operating point, which is recomputed at each iteration of the control method. This temporary operating point is defined by the present value of the voltage source inverter-fed PMSM state vector and by the last sampled value of the motor’s control input vector. The linearization relies on Taylor series expansion and the calculation of the system’s Jacobian matrices. For the approximately linearized model of the voltage source inverter-fed PMSM, an H-infinity feedback controller is designed. For the computation of the controller’s feedback gains, an algebraic Riccati equation is iteratively solved at each time-step of the control method. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, to implement state estimation-based control for this system, the H-infinity Kalman filter is proposed as a state observer. The proposed control method achieves fast and accurate tracking of the reference setpoints of the VSI-fed PMSM under moderate variations of the control inputs.

Findings

The proposed H-infinity controller provides the solution to the optimal control problem for the VSI-PMSM system under model uncertainty and external perturbations. Actually, this controller represents a min–max differential game taking place between the control inputs, which try to minimize a cost function that contains a quadratic term of the state vector’s tracking error, the model uncertainty, and exogenous disturbance terms, which try to maximize this cost function. To select the feedback gains of the stabilizing feedback controller, an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. To analyze the stability properties of the control scheme, the Lyapunov method is used. It is proven that the VSI-PMSM loop has the H-infinity tracking performance property, which signifies robustness against model uncertainty and disturbances. Moreover, under moderate conditions, the global asymptotic stability properties of this control scheme are proven. The proposed control method achieves fast tracking of reference setpoints by the VSI-PMSM state variables, while keeping also moderate the variations of the control inputs. The latter property indicates that energy consumption by the VSI-PMSM control loop can be minimized.

Practical implications

The proposed nonlinear optimal control method for the VSI-PMSM system exhibits several advantages: Comparing to global linearization-based control methods, such as Lie algebra-based control or differential flatness theory-based control, the nonlinear optimal control scheme avoids complicated state variable transformations (diffeomorphisms). Besides, its control inputs are applied directly to the initial nonlinear model of the VSI-PMSM system, and thus inverse transformations and the related singularity problems are also avoided. Compared with backstepping control, the nonlinear optimal control scheme does not require the state-space description of the controlled system to be found in the triangular (backstepping integral) form. Compared with sliding-mode control, there is no need to define in an often intuitive manner the sliding surfaces of the controlled system. Finally, compared with local model-based control, the article’s nonlinear optimal control method avoids linearization around multiple operating points and does not need the solution of multiple Riccati equations or LMIs. As a result of this, the nonlinear optimal control method requires less computational effort.

Social implications

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion), The solution of the associated nonlinear control problem enables reliable and precise functioning of VSI-fd PMSMs. This in turn has a positive impact in all related industrial applications and in tasks of electric traction and propulsion where VSI-fed PMSMs are used. It is particularly important for electric transportation systems and for the wide use of electric vehicles as expected by green policies which aim at deploying electromotion and at achieving the Net Zero objective.

Originality/value

Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system’s state vector and by the last sampled value of the control input vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation, which is used for computing the feedback gains of the controller, is new, as is the global stability proof for this control method. Comparing with nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems that can be transformed to the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2024

Masoud Parsi, Vahid Baradaran and Amir Hossein Hosseinian

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of…

Abstract

Purpose

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of offshore projects and their environmental-degrading effects have been embraced as well. The durations of activities are uncertain in this model. The developed formulation is tri-objective that seeks to minimize the expected time, total cost and CO2 emission of all projects.

Design/methodology/approach

A new version of the multiobjective multiagent optimization (MOMAO) algorithm has been proposed to solve the amalgamated model. To empower the MOMAO, various procedures of this algorithm have been modified based on the multiattribute utility theory (MAUT) technique. Along with the MOMAO, this study has employed four other meta-heuristic methodologies to solve the model as well.

Findings

The outputs of the MOMAO have been put to test against four other optimizers in terms of convergence, diversity, uniformity and computation times. The results of the Mean Ideal Distance (MID) metric have revealed that the MOMAO has strongly prevailed its rival optimizers. In terms of diversity of the acquired solutions, the MOMAO has ranked the first among all employed optimizers since this algorithm has offered the best solutions in 56.66 and 63.33% of the test problems regarding the diversification metric and hyper-volume metrics. Regarding the uniformity of results, which is measured through the spacing metric (SP), the MOMAO has presented the best SP values in more than 96% of the test problems. The MOMAO has needed more computation times in comparison to its rivals.

Practical implications

A real case study comprising two concurrent offshore projects has been offered. The proposed formulation and the MOMAO have been implemented for this case study, and their effectiveness has been appraised.

Originality/value

Very few studies have focused on presenting an integrated formulation for the stochastic multiproject scheduling and material ordering problems. The model embraces some of the characteristics of the offshore projects which have not been adequately studied in the literature. Limited capacities of the offshore platforms and cargo vessels have been embedded in the proposed model. The offshore platforms have spatial limitations in storing the required materials. The vessels are also capacitated and they also have limited shipment capacities. Some of the required materials need to be transported from the base to the offshore platform via a fleet of cargo vessels. The workforces and equipment can become idle on the offshore platform due to material shortage. Various offshore-related costs have been integrated as a minimization objective function in the model. The cargo vessels release CO2 detrimental emissions to the environment which are sought to be minimized in the developed formulation. To the best of the authors' knowledge, the MOMAO has not been sufficiently employed as a solution methodology for the stochastic multiproject scheduling and material ordering problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Abstract

Purpose

In this paper, the authors study the nonlinear matrix equation Xp=Q±A(X-1+B)-1AT, that occurs in many applications such as in filtering, network systems, optimal control and control theory.

Design/methodology/approach

The authors present some theoretical results for the existence of the solution of this nonlinear matrix equation. Then the authors propose two iterative schemes without inversion to find the solution to the nonlinear matrix equation based on Newton's method and fixed-point iteration. Also the authors show that the proposed iterative schemes converge to the solution of the nonlinear matrix equation, under situations.

Findings

The efficiency indices of the proposed schemes are presented, and since the initial guesses of the proposed iterative schemes have a high cost, the authors reduce their cost by changing them. Therefore, compared to the previous scheme, the proposed schemes have superior efficiency indices.

Originality/value

Finally, the accuracy and effectiveness of the proposed schemes in comparison to an existing scheme are demonstrated by various numerical examples. Moreover, as an application, by using the proposed schemes, the authors can get the optimal controller state feedback of $x(t+1) = A x(t) + C v(t)$.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2023

Albert Ochien'g Abang'a and Venancio Tauringana

To investigate the impact of board characteristics (board gender diversity, board chair age, board subcommittees, board meetings, board skill, board size and board independence…

Abstract

Purpose

To investigate the impact of board characteristics (board gender diversity, board chair age, board subcommittees, board meetings, board skill, board size and board independence) on corporate social responsibility disclosures (CSRD) of state-owned enterprises (SOEs) in Kenya during the period 2015–2018.

Design/methodology/approach

The study employed fixed-effects balanced panel data to examine the impact of board characteristics on CSRD. The analysis is repeated using two regression estimators (robust least square and random effects) and the four CSRD subcomponents to evaluate the robustness of the main analysis.

Findings

The results established that board gender diversity, board chair age and board subcommittees had significant negative effects on CSRD. The impact of the remaining board characteristics was found to be insignificant.

Research limitations/implications

The study was limited to the disclosures included in the annual reports, which means that information disclosed in other media, like websites, was not considered. The second limitation concerns mediating and moderator variables that were not considered.

Practical implications

There is a need for a stricter corporate governance implementation mechanism, as opposed to the “comply or explain” principle, since results suggest that most of the board characteristics do not appear to be impactful. Additionally, the low level of reported CSRD calls for the establishment of Corporate Social Responsibility or related committees.

Social implications

The evidence suggests that SOEs are reluctant to report on issues such as ethics, health and safety initiatives, environment and social investments.

Originality/value

The paper extends the literature on the impact of board characteristics on CSRD in unlisted non-commercial SOEs in a developing country context.

Details

Journal of Accounting in Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-1168

Keywords

1 – 10 of 91