Search results

1 – 10 of over 30000
Article
Publication date: 23 November 2018

Vladimir Kobelev

The purpose of this paper is to consider divergence of composite plate wings as well as slender wings with thin-walled cross-section of small-size airplanes. The main attention is…

Abstract

Purpose

The purpose of this paper is to consider divergence of composite plate wings as well as slender wings with thin-walled cross-section of small-size airplanes. The main attention is paid to establishing of closed-form mathematical solutions for models of wings with coupling effects. Simplified solutions for calculating the divergence speed of wings with different geometry are established.

Design/methodology/approach

The wings are modeled as anisotropic plate elements and thin-walled beams with closed cross-section. Two-dimensional plate-like models are applied to analysis and design problems for wings of large aspect ratio.

Findings

At first, the equations of elastic deformation for anisotropic slender, plate-like wing with the large aspect ratio are studied. The principal consideration is delivered to the coupled torsion-bending effects. The influence of anisotropic tailoring on the critical divergence speed of the wing is examined in closed form. At second, the method is extended to study the behavior of the large aspect ratio, anisotropic wing with box-like wings. The static equations of the wing with box-like profile are derived using the theory of anisotropic thin-walled beams with closed cross-section. The solutions for forward-swept wing with box-like profiles are given in analytical formulas. The formulas for critical divergence speed demonstrate the dependency upon cross-sectional shape characteristics and anisotropic properties of the wing.

Research limitations/implications

The following simplifications are used: the simplified aerodynamic theory for the wings of large aspect ratio was applied; the static aeroelastic instability is considered (divergence); according to standard component methodology, only the component of wing was modeled, but not the whole aircraft; the simplified theories (plate-lime model for flat section or thin-walled beam of closed-section) were applied; and a single parameter that defines the rotation of a stack of single layers over the face of the wing.

Practical implications

The simple, closed-form formulas for an estimation of critical static divergence are derived. The formulas are intended for use in designing of sport aircraft, gliders and small unmanned aircraft (drones). No complex analysis of airflow and advanced structural and aerodynamic models is necessary. The expression for chord length over the span of the wing allows for accounting a board class of wing shapes.

Social implications

The derived theory facilitates the use of composite materials for popular small-size aircraft, and particularly, for drones and gliders.

Originality/value

The closed-form solutions for thin-walled beams in steady gas flow are delivered in closed form. The explicit formulas for slender wings with variable chord and stiffness along the wing span are derived.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 January 2024

Xianguang Sun

The purpose of this study is to establish a thermal contact conductance model of rough surfaces with inclination based on three-dimensional fractal theory.

Abstract

Purpose

The purpose of this study is to establish a thermal contact conductance model of rough surfaces with inclination based on three-dimensional fractal theory.

Design/methodology/approach

The effects of contact load, inclination angle, fractal dimensional and fractal roughness on thermal contact conductance of rough surfaces were studied using numerical simulation.

Findings

The results show that the thermal contact conductance of the rough surface increases with the increase of contact load and fractal dimension and decreases with the increase of fractal roughness and inclination angle. The inclination angle of the rough surface has an important influence on the thermal contact conductance of the rough, and it is a factor that cannot be ignored in the study of the thermal contact conductance of rough surfaces.

Originality/value

A thermal contact conductance model of rough surfaces with inclination based on three-dimensional fractal theory was established in this study. The achievements of this study provide some theoretical basis for the investigation of the thermal contact conductance of rough surfaces.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 April 1998

Doreen S.K. Tan and Syed Akhtar

This study examined the relationships of normative and affective facets of organizational commitment with experienced burnout within the framework of the Confucian‐based Chinese…

Abstract

This study examined the relationships of normative and affective facets of organizational commitment with experienced burnout within the framework of the Confucian‐based Chinese culture. Data for this exploratory work were collected through a questionnaire survey of 147 employees of a Chinese‐owned bank in Hong Kong. The questionnaire consisted of scales on experienced burnout, organizational commitment, and work perceptions. Results showed that the mean score for normative commitment was significantly higher than the mean score for affective commitment. Regression analysis indicated that when age, tenure, organizational level, and work perceptions were controlled, normative commitment had a significant positive effect on experienced burnout, whereas affective commitment had no significant impact. Results are interpreted in the context of a Confucian‐based Chinese managerial ideology and implications are drawn for future research.

Details

The International Journal of Organizational Analysis, vol. 6 no. 4
Type: Research Article
ISSN: 1055-3185

Article
Publication date: 7 September 2021

Shishir Gupta, Soumik Das and Rachaita Dutta

The purpose of the present study is to investigate the dispersion and damping behaviors of Love-type waves propagating in an irregular fluid-saturated fissured porous stratum…

Abstract

Purpose

The purpose of the present study is to investigate the dispersion and damping behaviors of Love-type waves propagating in an irregular fluid-saturated fissured porous stratum coated by a sandy layer.

Design/methodology/approach

Two cases are analyzed in this study. In case-I, the irregular fissured porous stratum is covered by a dry sandy layer, whereas in case-II, the sandy layer is considered to be viscous in nature. The method of separation of variables is incorporated in this study to acquire the displacement components of the considered media.

Findings

With the help of the suitable boundary conditions, the complex frequency relation is established in each case leading to two distinct equations. The real and imaginary parts of the complex frequency relation define the dispersion and attenuation properties of Love-type waves, respectively. Using the MATHEMATICA software, several graphical implementations are executed to illustrate the influence of the sandiness parameter, total porosity, volume fraction of fissures, fluctuation parameter, flatness parameters and ratio of widths of layers on the phase velocity and attenuation coefficient. Furthermore, comparison between the two cases is clearly framed through the variation of aforementioned parameters. Some particular cases in the presence and absence of irregular interfaces are also analyzed.

Originality/value

To the best of the authors' knowledge, although many articles regarding the surface wave propagation in different crustal layers have been published, the propagation of Love-type waves in a sandwiched fissured porous stratum with irregular boundaries is still undiscovered. Results accomplished in this analytical study can be employed in different practical areas, such as earthquake engineering, material science, carbon sequestration and seismology.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Content available
Book part
Publication date: 6 June 2023

Abstract

Details

Airlines and Developing Countries
Type: Book
ISBN: 978-1-80455-861-4

Article
Publication date: 2 September 2019

Di Yang, Weiwei Qu and Yinglin Ke

The riveting process is a metal forming process involving complex elastic-plastic deformation, which will induce a compressive residual stress field and cause local distortions in…

Abstract

Purpose

The riveting process is a metal forming process involving complex elastic-plastic deformation, which will induce a compressive residual stress field and cause local distortions in the connecting areas. Regarding to the aircraft panel assemblies with plenty of rivets, the global deformation is inevitable and undesired, leading difficulties to downstream assembly processes. This paper aims to present a new method for the local distortion calculation and the global deformation prediction of sheet panel assemblies during the automated riveting process.

Design/methodology/approach

In this paper, a simplified algebraic study is presented to analyze the local distortion of single countersunk rivet joint with the consideration of the barrel-like shape of the driven head and the through-thickness variations along the rivet shank. Then, an equivalent rivet unit is proposed based on the result of the algebraic study and embedded into the global-level model for the prediction of the overall distortions of riveted panels.

Findings

The algebraic study is able to reach a more precise contour of the deformed rivet than the traditional assumption of cylindrical deformations and rapidly determine the equivalent coefficients of the riveting unit. The result also shows an industrial acceptable accuracy of the prediction for the global deformations of the double-layered panel assemblies widely used in the aircraft panel structures.

Originality/value

A new local-global method for predicting the deformations of the riveted panel assembly based on the algebraic study of the local distortions is proposed to help the engineers in the early design stages or in the assembly process planning stage.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 1950

Professeur and W. Hunziker

Normalement la science a la tâche et le mérite de définir les notions et d'écarter de celles‐ci ce qui demeure incertain. Le tourisme pourrait aussi recourir à son assistance, on…

Abstract

Normalement la science a la tâche et le mérite de définir les notions et d'écarter de celles‐ci ce qui demeure incertain. Le tourisme pourrait aussi recourir à son assistance, on sait que la science ne lui est pas restée indifférente; c'est sous cet angle par exemple qu'il est enseigné aux universités de Berne et de St‐Gall. Nous ne voulons pourtant pas ici entrer dans ce domaine. Dans la mesure du possible, nous nous contenterons seulement de faire appel à l'objectivité qui caractérise les méthodes scientifiques et de nous inspirer de leur précision.

Details

The Tourist Review, vol. 5 no. 4
Type: Research Article
ISSN: 0251-3102

Article
Publication date: 31 January 2024

Elham Zandi, Majid Fouladian and Jalil Mazloum

The purpose of this research is to efficiently separate incident terahertz (THz) waves into distinct transmission and reflection channels by minimizing the absorption ratio. So…

Abstract

Purpose

The purpose of this research is to efficiently separate incident terahertz (THz) waves into distinct transmission and reflection channels by minimizing the absorption ratio. So, the optical systems operating within the THz frequency range can developed. To achieve a multi-band response, four different periodic arrays of graphene patterns are used. These arrays are strategically stacked on both sides of three SU-8 photoresists, serving as dielectric materials. Consequently, each layer exhibits a unique influence on the device's response, and by applying four external bias voltages, the behavior of the device can be precisely controlled and adjusted.

Design/methodology/approach

A novel optoelectronic device operating in the THz frequency range is introduced, using periodic arrays of graphene patterns and SU-8 photoresist dielectrics. The design of this device is based on meta-surface principles, using both the equivalent circuit model (ECM) and transmission line concept. The output of the device is a THz coupler implemented by analyzing the reflection and transmission channels. The structure is characterized using the ECM and validated through comprehensive full-wave simulations. By representing the electromagnetic phenomenon with passive circuit elements, enabling the calculation of absorption, reflection and transmission through the application of the theory of maximum power transfer.

Findings

Based on simulation results and theoretical analysis, the proposed device exhibits sensitivity to gate biasing, enabling efficient reflection and transmission of THz waves. The device achieves reflection and transmission peaks exceeding across the five distinct THz bands 90%, and its behavior can be tuned by external gate biasing. Moreover, the device's sensitivity to variations in geometrical parameters and chemical potentials demonstrates its reliable performance. With its outstanding performance, this high-performance meta-surface emerges as an ideal candidate for fundamental building blocks in larger optical systems, including sensors and detectors, operating within the THz frequency band.

Originality/value

The proposed device covers a significant portion of the THz gap through the provision of five adjustable peaks for reflection and transmission channels. Additionally, the ECM and impedance matching concept offers a simplified and time-efficient approach to designing the meta-surface. Leveraging this approach, the proposed device is effectively represented using passive circuit elements such as inductors, capacitors and resistors, while its performance is validated through the utilization of the finite element method (FEM) as a full-wave simulation tool. This combination of circuit modeling and FEM simulation contributes to the robustness and accuracy of the device's performance evaluation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 April 2016

Mohammad Ali Dehghani and Mohammad Bagher Menhaj

The purpose of this paper is achieving a leader–follower formation of unmanned aerial vehicles which is a cooperative scenario inspired by formation flying of living organisms…

Abstract

Purpose

The purpose of this paper is achieving a leader–follower formation of unmanned aerial vehicles which is a cooperative scenario inspired by formation flying of living organisms such as geese. Designing a control strategy based on only vision measurement (without radio communication) and keeping connectivity in vision are important challenges in the formation flying problem which is the base of formation flying in living organisms.

Design/methodology/approach

To achieve the mentioned purposes, a feedback linearization technique is used. Moreover, a Takagi-Sugeno-based supervisory control strategy for visibility maintenance combined with an acceleration estimator to compensate the leader maneuvers is proposed.

Findings

The authors conclude that by using practical seeker sensors, all the mentioned objectives (under the proposed strategy) can be satisfied.

Originality/value

Keeping formation and visibility maintenance in the presence of the leader maneuver are the main contributions of the paper.

Details

Assembly Automation, vol. 36 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 14 May 2018

Zhixiong Zhang, Chunbing Wu, Tang Li, Keshan Liang and Yujun Cao

Selective laser melting (SLM) enables the fabrication of lightweight and complex metallic structures. Support structures are required in the SLM process to successfully produce…

Abstract

Purpose

Selective laser melting (SLM) enables the fabrication of lightweight and complex metallic structures. Support structures are required in the SLM process to successfully produce parts. Supports are typically lattice structures, which cost much time and material to manufacture. Besides, the manufacturability of these supports is undesirable, which may impact the quality of parts or even fail the process. The purpose of this paper is to investigate the efficiency and mechanical properties of advanced internal branch support structures for SLM.

Design/methodology/approach

The theoretic weight of a branch support and a lattice support of the same plane were calculated and compared. A group of standard candidates of branch support structures were manufactured by SLM. The weight and scanning time of specimens with different design parameters were compared. Then, these samples were tested using an MTS Insight 30 compression testing machine to study the influence of different support parameters on mechanical strength of the support structures.

Findings

The results show that branch type supports can save material, energy and time used needed for their construction. The yield strength of the branch increases with the branch diameter and inclined branch angle in general. Furthermore, branch supports have a higher strength than traditional lattice supports.

Originality/value

To the best of the authors’ knowledge, this is the first work investigating production efficiency and mechanical properties of branch support structures for SLM. The findings in this work are valuable for development of advanced optimal designs of efficient support structures for SLM process.

Details

Rapid Prototyping Journal, vol. 24 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 30000