Search results

1 – 10 of over 1000
Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 January 2023

Yongliang Wang

This study aims to provide a reliable and effective algorithm that is suitable for addressing the problems of continuous orders of frequencies and modes under different boundary…

Abstract

Purpose

This study aims to provide a reliable and effective algorithm that is suitable for addressing the problems of continuous orders of frequencies and modes under different boundary conditions, circumferential wave numbers and thickness-to-length ratios of moderately thick circular cylindrical shells. The theory of free vibration of rotating cylindrical shells is of utmost importance in fields such as structural engineering, rock engineering and aerospace engineering. The finite element method is commonly used to study the theory of free vibration of rotating cylindrical shells. The proposed adaptive finite element method can achieve a considerably more reliable high-precision solution than the conventional finite element method.

Design/methodology/approach

On a given finite element mesh, the solutions of the frequency mode of the moderately thick circular cylindrical shell were obtained using the conventional finite element method. Subsequently, the superconvergent patch recovery displacement method and high-order shape function interpolation techniques were introduced to obtain the superconvergent solution of the mode (displacement), while the superconvergent solution of the frequency was obtained using the Rayleigh quotient computation. Finally, the superconvergent solution of the mode was used to estimate the errors of the finite element solutions in the energy norm, and the mesh was subdivided to generate a new mesh in accordance with the errors.

Findings

In this study, a high-precision and reliable superconvergent patch recovery solution for the vibration modes of variable geometrical rotating cylindrical shells was developed. Compared with conventional finite element method, under the challenging varying geometrical circumferential wave numbers, and thickness–length ratios, the optimised finite element meshes and high-precision solutions satisfying the preset error limits were obtained successfully to solve the frequency and mode of continuous orders of rotating cylindrical shells with multiple boundary conditions such as simple and fixed supports, demonstrating good solution efficiency. The existing problem on the difficulty of adapting a set of meshes to the changes in vibration modes of different orders is finally overcome by applying the adaptive optimisation.

Originality/value

The approach developed in this study can accurately obtain the superconvergent patch recovery solution of the vibration mode of rotating cylindrical shells. It can potentially be extended to fine numerical models and high-precision computations of vibration modes (displacement field) and solid stress (displacement derivative field) for general structural special value problems, which can be extensively applied in the field of engineering computations in the future. Furthermore, the proposed method has the potential for adaptive analyses of shell structures and three-dimensional structures with crack damage. Compared with conventional finite element methods, significant advantages can be achieved by solving the eigenvalues of structures with high precision and stability.

Article
Publication date: 8 July 2022

Lei Huang, Qiushi Xia, Tianhe Gao, Bo Wang and Kuo Tian

The purpose of this paper is to propose a numerical prediction method of buckling loads for shell structures under axial compression and thermal loads based on vibration…

Abstract

Purpose

The purpose of this paper is to propose a numerical prediction method of buckling loads for shell structures under axial compression and thermal loads based on vibration correlation technique (VCT).

Design/methodology/approach

VCT is a non-destructive test method, and the numerical realization of its experimental process can become a promising buckling load prediction method, namely numerical VCT (NVCT). First, the derivation of the VCT formula for thin-walled structures under combined axial compression and thermal loads is presented. Then, on the basis of typical NVCT, an adaptive step-size NVCT (AS-NVCT) calculation scheme based on an adaptive increment control strategy is proposed. Finally, according to the independence of repeated frequency analysis, a concurrent computing framework of AS-NVCT is established to improve efficiency.

Findings

Four analytical examples and one optimization example for imperfect conical-cylindrical shells are carried out. The buckling prediction results for AS-NVCT agree well with the test results, and the efficiency is significantly higher than that of typical numerical buckling methods.

Originality/value

The derivation of the VCT formula for thin-walled shells provides a theoretical basis for NVCT. The adaptive incremental control strategy realizes the adaptive adjustment of the loading step size and the maximum applied load of NVCT with Python script, thus establishing AS-NVCT.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 March 2011

Amir H. Hashemian, Mohammad H. Kargarnovin and Jafar E. Jam

The purpose of this paper is to analyze a squared lattice cylindrical shell under compressive axial load and to optimize the geometric parameters to achieve the maximum buckling…

Abstract

Purpose

The purpose of this paper is to analyze a squared lattice cylindrical shell under compressive axial load and to optimize the geometric parameters to achieve the maximum buckling load. Also a comparison between buckling loads of a squared lattice cylinder and a solid hollow cylinder with equal weight, length and outer diameter is performed to reveal the superior performance of the squared lattice cylindrical shells.

Design/methodology/approach

A cylindrical lattice shell includes circumferential and longitudinal rods with geometric parameters such as cross‐section areas of the rods, distances and angles between them. In this study, the governing differential equation for buckling load which can be presumed as a criterion for designing lattice structures with a specific weight is derived and is used as an objective function in genetic algorithm (GA) method to calculate the optimum geometric parameters of the shell. The optimum parameters were modelled in finite element method (FEM) in order to verify the buckling loads obtained from GA. In another effort, the FEM was applied to analyze the solid hollow cylinders.

Findings

The results demonstrate relatively close agreement between the buckling loads obtained from GA and FEM for such shells. It was also shown that latticed cylinders have better performance to carry compressive axial loads than the equivalent solid hollow cylinders with equal weights, lengths and outer diameters.

Research limitations/implications

The studies reported in this paper have been carried out for a single squared lattice shell without using two‐side skins. However, using skins can give better performance in carrying compressive axial loads.

Practical implications

The results in this paper show that this type of effective, economical lightweight and functional structures could be applied as inter‐stages, inter‐tanks, aircraft fuselage, rocket motor cases, pressure vessels and other elements of civil engineering structures in order to have greater strength and lower weight.

Originality/value

Squared lattice cylindrical shell with optimum geometric design could provide the chance for eliminating the stiffeners of shells in aerospace structures in order to decrease the weight and increase the load‐bearing capacity.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 8 January 2020

Mohammad Amin Shahmohammadi, Mojtaba Azhari, Mohammad Mehdi Saadatpour and Saeid Sarrami-Foroushani

This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main…

Abstract

Purpose

This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main aim of the present study is developing an efficient combined method which uses the advantages of different methods, such as finite element method (FEM) and isogeometric analysis (IGA), to achieve multipurpose targets. Two types of material including laminated composite and sandwich functionally graded material are considered.

Design/methodology/approach

A novel type of finite strip method called isogeometric B3-spline finite strip method (IG-SFSM) is used to solve the eigenvalue buckling problem. IG-SFSM uses B3-spline basis functions to interpolate the buckling displacements and mapping operations in the longitudinal direction of the strips, whereas the Lagrangian functions are used in transverse direction. The current presented IG-SFSM is formulated based on the degenerated shell method.

Findings

The buckling behavior of laminated shells is discussed by solving several examples corresponding to shells with various geometries, boundary conditions and material properties. The effects of mechanical and geometrical properties on critical loads of shells are investigated using the related results obtained by IG-SFSM.

Originality/value

This paper shows that the proposed IG-SFSM leads to the critical loads with an approved accuracy comparing with the same examples extracted from the literature. Moreover, it leads to a high level of convergence rate and low cost of solving the stability problems in comparison to the FEM.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 October 2018

Salvatore Brischetto

The main idea is the comparison between composites including natural fibres (such as the linoleum fibres) and typical composites including carbon fibres or glass fibres. The…

Abstract

Purpose

The main idea is the comparison between composites including natural fibres (such as the linoleum fibres) and typical composites including carbon fibres or glass fibres. The comparison is proposed for different structures (plates, cylinders, cylindrical and spherical shells), lamination sequences (cross-ply laminates and sandwiches with composite skins) and thickness ratios. The purpose of this paper is to understand if linoleum fibres could be useful for some specific aerospace applications.

Design/methodology/approach

A general exact three-dimensional shell model is used for the static analysis of the proposed structures to obtain displacements and stresses through the thickness. The shell model is based on a layer-wise approach and the differential equations of equilibrium are solved by means of the exponential matrix method.

Findings

In qualitative terms, composites including linoleum fibres have a mechanical behaviour similar to composites including glass or carbon fibres. In terms of stress and displacement values, composites including linoleum fibres can be used in aerospace applications with limited loads. They are comparable with composites including glass fibres. In general, they are not competitive with respect to composites including carbon fibres. Such conclusions have been verified for different structure geometries, lamination sequences and thickness ratios.

Originality/value

The proposed general exact 3D shell model allows the analysis of different geometries (plates and shells), materials and laminations in a unified manner using the differential equilibrium equations written in general orthogonal curvilinear coordinates. These equations written for spherical shells degenerate in those for cylinders, cylindrical shell panels and plates by means of opportune considerations about the radii of curvature. The proposed shell model allows an exhaustive comparison between different laminated and sandwich composite structures considering the typical zigzag form of displacements and the correct imposition of compatibility conditions for displacements and equilibrium conditions for transverse stresses.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 August 2011

Haris Hameed Mian and Hammad Rahman

Filament wound pressure vessels have a characteristic pattern observed in their helical layers. These are mosaic‐shaped patterns and affect the layer structural behavior. The…

Abstract

Purpose

Filament wound pressure vessels have a characteristic pattern observed in their helical layers. These are mosaic‐shaped patterns and affect the layer structural behavior. The present research aims to focus on the influence of mosaic patterns on stress‐strain field and structural design of thin‐walled internally pressurized filament wound pressure vessel. The widely used stress analysis procedures and the commercially available finite element tools usually neglect the effect of the mosaic patterns. The present work seeks to deal with the modeling and stress analysis of complete pressure vessel, incorporating mosaic patterns.

Design/methodology/approach

The incorporation of the mosaic effect provides more realistic modeling of the real stress distribution and the stress values compared to the conventional analyses (the effect would depend on the shell structure, i.e. number of plies, relative thicknesses, etc.). The structural analysis is performed using commercial finite element analysis (FEA) tools ANSYS.

Findings

The comparison of results of analytical solution and conventional FEA provides close values of the stresses in the plies. As for the stress and strain distributions obtained by incorporating the effect of mosaic patterns are considerably different. The distribution of the stress and strain fields are not uniform along the length of the vessel and along its circumference and the maximum stresses acting in the direction of the fibers are higher than those calculated using conventional FEA techniques.

Originality/value

Previous work was limited to composite cylindrical shells, without incorporating the end domes. The present work deals with the modeling and stress analysis of complete pressure vessel, incorporating mosaic patterns.

Details

International Journal of Structural Integrity, vol. 2 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 January 2018

Kulmani Mehar and Subrata Kumar Panda

The purpose of this paper is to develop a general mathematical model for the evaluation of the theoretical flexural responses of the functionally graded carbon nanotube-reinforced…

Abstract

Purpose

The purpose of this paper is to develop a general mathematical model for the evaluation of the theoretical flexural responses of the functionally graded carbon nanotube-reinforced composite doubly curved shell panel using higher-order shear deformation theory with thermal load. It is well-known that functionally graded materials are a multidimensional problem, and the present numerical model is also capable of solving the flexural behaviour of different shell panel made up of carbon nanotube-reinforced composite with adequate accuracy in the absence of experimentation.

Design/methodology/approach

In this current paper, the responses of the single-walled carbon nanotube-reinforced composite panel is computed numerically using the proposed generalised higher-order mathematical model through a homemade computer code developed in MATLAB. The desired flexural responses are computed numerically using the variational method.

Findings

The validity and the convergence behaviour of the present higher-order model indicate the necessity for the analysis of multidimensional structure under the combined loading condition. The effect of various design parameters on the flexural behaviour of functionally graded carbon nanotube doubly curved shell panel are examined to highlight the applicability of the presently proposed higher-order model under thermal environment.

Originality/value

In this paper, for the first time, the static behaviour of functionally graded carbon nanotube-reinforced composite doubly curved shell panel is analysed using higher-order shear deformation theory. The properties of carbon nanotube and the matrix material are considered to be temperature dependent. The present model is so general that it is capable of solving various geometries from single curve to doubly curved panel, including the flat panel.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3543

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2005

S.M.B. Afonso, J. Sienz and F. Belblidia

Shells are widely used structural systems in engineering practice. These structures have been used in the civil, automobile and aerospace industries. Many shells are designed…

1191

Abstract

Purpose

Shells are widely used structural systems in engineering practice. These structures have been used in the civil, automobile and aerospace industries. Many shells are designed using the finite element analysis through the conventional and costly trial and error scheme. As a more efficient alternative, optimization procedures can be used to design economic and safe structures.

Design/methodology/approach

This paper presents developments, integration and applications of reliable and efficient computational tools for the structural optimization of variable thickness plates and free‐form shells. Topology, sizing and shape optimization procedures are considered here. They are applied first as isolated subjects. Then these tools are combined to form a robust and reliable fully integrated design optimization tool to obtain optimum designs. The unique feature is the application of a flexible integrally stiffened plate and shell formulation to the design of stiffened plates and shells.

Findings

This work showed the use of different optimization strategies to obtain an optimal design for plates and shells. Both topology optimization (TO) and structural shape optimization procedures were considered. These two optimization applications, as separate procedures produce new designs with a great improvement when compared to the initial designs. However, the combination of stiffening TO and sizing optimization using integrally stiffened shells appears as a more attractive tool to be used. This was illustrated with several examples.

Originality/value

This work represents a novel approach to the design of optimally stiffened shells and overcomes the drawbacks of both topology optimization and structural shape optimization procedures when applied individually. Furthermore, the unique use of integrally stiffened shell elements for optimization, unlike conventional shell‐stiffening optimization techniques, provided a general and extremely flexible tool.

Details

Engineering Computations, vol. 22 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000