Search results

1 – 10 of 42
Open Access
Article
Publication date: 6 December 2020

Benedetto Allotta, Lorenzo Fiorineschi, Susanna Papini, Luca Pugi, Federico Rotini and Andrea Rindi

This study aims to carry out an investigation of design approaches that should be used for the design of unconventional, innovative transmission system for construction yards to…

2714

Abstract

Purpose

This study aims to carry out an investigation of design approaches that should be used for the design of unconventional, innovative transmission system for construction yards to privilege a smooth behaviour efficiency, and the use of innovative production techniques. Results are quite surprising, as with a proper method it is possible to demonstrate that a cycloidal drive with Wolfrom topology should be an interesting solution for the proposed application.

Design/methodology/approach

With a functional approach, also considering materials and specifications related to the investigated application, it is possible to demonstrate that possible optimal solutions should be quite different respect to the ones that can be suggested with a conventional approach. In particular for proposed applications constraints related to encumbrances, the choice of new material has led to the innovative unconventional choice of a Wolfrom cycloidal speed reducer.

Findings

Provided solution is innovative respect current state of the art for machine currently used in construction yards: in terms of adopted transmission layout; in terms of chosen materials, resulting in an innovative solution.

Research limitations/implications

Current research has strong implications on the adoption of polimeric materials for the construction of reliable transmission for harsh industrial environment as the proposed case study (concrete mixer for construction yard).

Originality/value

Proposed transmission system is absolutely original and innovative respect current state of art also considering proposed materials and consequently production methods. This is an example of transmission designed to be built with polymeric materials by optimizing chosen topology respect to chosen material.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 October 2018

Hailang Zhang, Yu Hu and Gengqi Wang

This paper aims to investigate the impact of aerofoil camber on the performance of micro-air-vehicle-scale cycloidal propellers.

Abstract

Purpose

This paper aims to investigate the impact of aerofoil camber on the performance of micro-air-vehicle-scale cycloidal propellers.

Design/methodology/approach

First, experiments were conducted to validate the numerical methodology. After that, three turbulent models were compared to select the most accurate one. Then, 2D numerical simulation was carried out on 11 aerofoils with different cambers, including five cambered aerofoils, one symmetrical aerofoil and five inverse cambered aerofoils. The inverse cambered aerofoils are symmetrical about the chord line to the corresponding cambered ones.

Findings

The cycloidal propeller with large cambered aerofoil gives the lowest hovering efficiency, but with symmetrical aerofoil or small inverse cambered aerofoil shows the highest. Also, blades with large cambered aerofoil display high performance at the upper part of its trajectory, while with symmetrical aerofoil or the inverse cambered aerofoil have their best at the lower part. In addition, intensified downwash can be observed in the rotor cage for all cases. When a blade runs through the top-left part of its circle path, all cases display the feature of deep dynamic stall. When the blade travels through the nadir of its path, the actual angle of attack is close to zero due to the strong downwash. Furthermore, there exits intensified blade-vortex interaction induced by the preceding blade for large cambered aerofoils at the lower-right part of its trajectory.

Practical implications

This paper develops a new cycloidal propeller which is more efficient than the one already present.

Originality/value

This paper discovers that the aerofoil camber is a vital design parameter in the performance of cycloidal propeller, and the authors expect that the rotor with deformable aerofoil on camber would achieve much higher efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2018

Yu Hu, Hailang Zhang and Gengqi Wang

This paper aims to investigate the mechanisms lying behind the cycloidal rotor under hovering status.

Abstract

Purpose

This paper aims to investigate the mechanisms lying behind the cycloidal rotor under hovering status.

Design/methodology/approach

Experiments were conducted to validate the numerical simulation results. The simulations were based on unsteady Reynolds-averaged Navier–Stokes (URANS) equations solver and the sliding mesh technique was used to model the blade motion. 2D and 2.5D simulations were made to investigate the 3D effects of turbulence. The effects of pressure and viscosity were compared to study the significance of the blade motion on force generation.

Findings

The 2.5D numerical simulation cannot produce more accurate results than the 2D counterpart. The pitching motion of the blade results in dynamic stall. The dynamic stall vortices induce parallel blade vortex interaction (BVI) upon downstream blades. The interactions between the blades delay the stall of the blade which is beneficial to the thrust generation. The blade pitching motion is the dominant contributor to the force generation and the turbulence is the secondary. Strong downwash in the rotor cage varied the inflow velocity as well as the effective angle of attack (AOA) of the blade.

Practical implications

Cycloidal rotor is a propulsion device that can provide omni-directional vectored thrust with high efficiency and low noise. To understand the mechanisms lying behind the cycloidal rotor helps the authors to design efficient cycloidal rotors for aircraft.

Originality/value

The authors discovered that the blade pitching motion plays primary role in force generation. The effects of the dynamic stall and BVI were studied. The reason why cycloidal rotor can be more efficient was discussed.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 June 2020

Lorenzo Fiorineschi, Susanna Papini, Luca Pugi, Andrea Rindi and Federico Rotini

The purpose of this study is to identify an innovative solution for the power transmission gearbox of concrete mixers, according to the specifications provided by the company.

Abstract

Purpose

The purpose of this study is to identify an innovative solution for the power transmission gearbox of concrete mixers, according to the specifications provided by the company.

Design/methodology/approach

A tailored systematic design approach (inspired to the German systematic framework) has been adopted to comprehensively gather the company specifications and perform in-depth design space explorations. Subsequently, an iterative embodiment design approach has been followed to identify the size of the components for the preferred concept, by using acknowledged mechanical design procedures and finite element analysis tools.

Findings

An innovative cycloidal gearbox has been developed, by merging the kinematics underpinning the classical cycloidal drives and the Wolfrom planetary gearbox. The resulting concept provides high reduction rates with a very high overload capacity.

Research limitations/implications

The main limitation of the studies is the absence of in-depth evaluations usually performed in the detail design phase. However, this limitation is a direct consequence of the company specifications, which only asked to find a preferred concept and to perform preliminary evaluations. Accordingly, the subsequent design optimization are intended to be performed by the company’s staff.

Originality/value

The present paper shows an original design approach, opportunely tailored to the design of innovative gearboxes. It can be conveniently adapted and reused by designers involved in similar tasks. Moreover, the designed cycloidal gearbox paves the way for important innovations in the field of concrete mixers, allowing to design more robust and compact devices.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 August 2000

V.H. Mucino, J.E. Smith and K. Sun

In this paper a new method for the hydrodynamic analysis of a sliding cylinder in a lubricated parallel track is presented. The method is an extension of Booker’s “Mobility…

Abstract

In this paper a new method for the hydrodynamic analysis of a sliding cylinder in a lubricated parallel track is presented. The method is an extension of Booker’s “Mobility Method” (developed for cylindrical journal bearings) for the case of a non‐rotating sliding cylinder in a parallel track. In this application, the clearance between the track and the cylinder, the viscosity of the lubricant, the radius and length of the pin, the sliding velocity and the applied transverse load determine the hydrodynamic behavior of the slider cylinder. An axial positive displacement vane device is used to illustrate the applicability of the hydrodynamic mobility approach for a lubrication analysis. A rotor and a stationary cylindrical cam with cycloidal tracks drive the axicycloidal motion of vanes. A case analysis is presented for a device running at constant speed, in which the inertia forces, friction forces and direct vane loads are taken into account to determine the hydrodynamic behavior of the sliding pins. The following results are produced: pin eccentricity paths, minimum lubricant film thickness history, peak film pressure history and pressure distributions on the cylindrical at any point of the motion. Results show small departures from the purely cycloidal lift‐dwell‐return‐dwell motion of the vanes due to the hydrodynamic performance of the pins.

Details

Industrial Lubrication and Tribology, vol. 52 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 August 2021

Peng Fan and Y.C. Kuang

The rotor in screw motor is driven to rotate by highly pressure difference of drilling fluid (DF), while rotor drives drill bit to break rocks. DF works in the volume cavity (VC…

Abstract

Purpose

The rotor in screw motor is driven to rotate by highly pressure difference of drilling fluid (DF), while rotor drives drill bit to break rocks. DF works in the volume cavity (VC) which exists between the stator and rotor (SAR), these process realizes the conversion from hydraulic energy to mechanical energy finally. In order to assure seal performance and output power reliability of VC in common hypocycloid screw motor (CHSM), it’s essential to survey SAR end-face profile.

Design/methodology/approach

In this article, based on the internal and external cycloid method given for SAR end-face of φ172 7/8-head LZ type CHSM, the interference among SAR is established based on the meshing model through theoretical equilibrium method (TEM). Last, the reasonable design value of SAR interference in TEM is verified with the hydraulic parameters test results.

Findings

The profile optimization that top-root part of rotor end-face profiles is replaced by elliptical-circular arcs (ECA) makes the transition area of tooth-top and tooth-root connect smoother than before. The reasonable interference of SAR in TEM is almost 0.16mm~0.22mm to ensure better sealing performance. Through the hydraulic test, the interference positive fluctuation or the number of SAR head reduces increase (starting-pressure-drop) SPD while negative fluctuations by contraries. Meanwhile, DF penetration also decreases the revolution speed with the SAR interference decreases. The less SAR head revolution speed is always below the more with the constant driving power and DF hydraulic drop. Ultimately, decreasing in overall-efficiency occurs for larger fluctuation of interference or or less interference among SAR.

Originality/value

The line type optimization and analysis in TEM for CHSM improves the motor seal and output performance, also has important application values simultaneously.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Zhenhua Zhang, Jiaxu Wang, Guangwu Zhou and Xin Pei

This paper aims to solve the lubrication failures in the turning arm bearing of RV reducer, give some help in perfecting the bearing structure design and provide theoretical basis…

Abstract

Purpose

This paper aims to solve the lubrication failures in the turning arm bearing of RV reducer, give some help in perfecting the bearing structure design and provide theoretical basis for the reducer’s performance improvement.

Design/methodology/approach

The paper establishes a mixed lubrication analysis model to study performance parameters. According to the discretization of parameters and iteration of equations, numerical simulation and theoretical analysis are achieved in computational process.

Findings

Considering influences of contact load, real rough surface and realistic geometry of RV reducer turning arm roller bearing, the mixed lubrication analysis model is established to study the ratio of oil film thickness, pressure distribution and maximum von Mises stress in different speeds, temperatures and fillets. The results of mixed lubrication show that reasonable round corner modification, increase in temperature and speed, decrease of surface roughness and lubricant types can improve the lubrication performance.

Originality/value

The mixed lubrication analysis model is established to study the influences of contact load, real rough surface and realistic geometry of RV reducer turning arm roller bearing. Different speed, temperature, lubricant and fillet modification are also considered in the research to analyze oil film thickness, pressure distribution and maximum von Mises stress. These studies can optimize structural design of bearing and direct engineer operations.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 April 2008

Ludvík Prášil and Jaroslav Mackerle

The finite element method (FEM) has become the prevalent technique used for analyzing physical phenomena in the field of structural, solid and fluid mechanics. The output of…

3196

Abstract

Purpose

The finite element method (FEM) has become the prevalent technique used for analyzing physical phenomena in the field of structural, solid and fluid mechanics. The output of scientific papers is fast growing and professionals are no longer able to be fully up‐to‐date with all the relevant information. The purpose of this paper is to provide a bibliographical review on the application of FEM in mechanical engineering, specifically for the analyses and simulations of gears and gear drives from the theoretical as well as practical points of view.

Design/methodology/approach

The following topics on gears and gear drives are handled from the computational points of view: gears in general, spur gears, helical gears, spiral bevel and hypoid gears, worm gears and other gear types and gear drives. The paper is organized into two parts. In the first one each topic is handled in a short text, relevant keywords are presented and current trends in applications of finite element techniques are briefly mentioned. The second part lists references of papers published for the period 1997‐2006.

Findings

This bibliography is intended to serve the needs of engineers and researchers as a comprehensive source of published papers on design, analysis and simulation of gears and gear drives.

Originality/value

The bibliography listed is by no means complete but it gives a comprehensive representation of different finite element applications on the subjects. It will save time for readers looking for information dealing with described subjects, not having an access to large databases or willingness to spend time with uncertain information retrieval.

Details

Engineering Computations, vol. 25 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2017

Shun Cui, Hiroshi Nishikawa, Jing Wang and Qian Zou

This study aims to use a thermal elastohydrodynamic lubrication (EHL) algorithm incorporating an Eyring flow model to solve a steady-state contact in simple sliding motion.

Abstract

Purpose

This study aims to use a thermal elastohydrodynamic lubrication (EHL) algorithm incorporating an Eyring flow model to solve a steady-state contact in simple sliding motion.

Design/methodology/approach

A theoretical model was used to investigate the effect of starvation on the surface dimple phenomenon by gradually reducing the thickness of the inlet oil layer.

Findings

The increase in the starvation degree reduces the dimple depth, film thickness, the pressure peak and the temperature rise. Under the severe starvation condition, the dimple is eliminated so that the EHL contact becomes partly parched. In elliptical results, for the same starvation parameters, the oil replenishment is stronger than that in circular contact.

Originality/value

This paper fulfils an exploration to study how the oil starvation influences the surface dimple phenomenon.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 March 2016

Louis Gagnon, Marco Morandini, Giuseppe Quaranta, Vincenzo Muscarello and Pierangelo Masarati

Few modeling approaches exist for cycloidal rotors because they are a prototypal technology. Thus, the purpose of this study was to develop new models for their analysis and…

Abstract

Purpose

Few modeling approaches exist for cycloidal rotors because they are a prototypal technology. Thus, the purpose of this study was to develop new models for their analysis and validation. These models were used to analyze cycloidal rotors and a helicopter that uses them instead of a tail rotor.

Design/methodology/approach

Three different models were developed to study the aerodynamic response of cycloidal rotors. They are a simplified analytical model resolved algebraically; a multibody model resolved numerically; and an unsteady computational fluid dynamics (CFD) model. The models were validated using data coming from three different experimental sources, each with rotor spans and radii of roughly 1 m. The CFD model was used to investigate the influence of rotor arms. The efficiency and the stability of the rotor in different configurations were studied. An aeroelastic multibody simulation was used to verify the influence of flexibility on the rotor response.

Findings

The analyses suggested that cycloidal rotors can increase the efficiency of a helicopter at high velocities while flexibility reduces it and may lead to instabilities.

Research limitations/implications

These models do not consider the effect of boundary layer friction on the trailing vortices generated by the rotor blades.

Practical implications

These models allow a four-step aerodynamic optimization procedure. First, a range of optimized configurations is obtained by the analytical model. Second, the multibody model refines that range. Third, the CFD model detects eventual problematic blade interactions.

Originality/value

The models presented should serve researchers and industrials looking for a means to measure the performance of cycloidal rotors concepts. The results presented also guide an initial cycloidal rotor design.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 42