Search results

1 – 10 of 158
Article
Publication date: 16 April 2024

Amina Dinari, Tarek Benameur and Fuad Khoshnaw

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis…

Abstract

Purpose

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis (FEA) model, it seeks to understand chemical and physical changes during aging processes. This research provides insights into nonlinear mechanical behavior, stress softening and microstructural alterations in SBR compounds, improving material performance and guiding future strategies.

Design/methodology/approach

This study combines experimental analyses, including cyclic tensile loading, attenuated total reflection (ATR), spectroscopy and energy-dispersive X-ray spectroscopy (EDS) line scans, to investigate the effects of thermo-mechanical aging (TMA) on carbon-black (CB) reinforced styrene-butadiene rubber (SBR). It employs a 3D FEA model using the Abaqus/Implicit code to comprehend the nonlinear behavior and stress softening response, offering a holistic understanding of aging processes and mechanical behavior under cyclic-loading.

Findings

This study reveals significant insights into SBR behavior during thermo-mechanical aging. Findings include surface roughness variations, chemical alterations and microstructural changes. Notably, a partial recovery of stiffness was observed as a function of CB volume fraction. The developed 3D FEA model accurately depicts nonlinear behavior, stress softening and strain fields around CB particles in unstressed states, predicting hysteresis and energy dissipation in aged SBRs.

Originality/value

This research offers novel insights by comprehensively investigating the impact of thermo-mechanical aging on CB-reinforced-SBR. The fusion of experimental techniques with FEA simulations reveals time-dependent mechanical behavior and microstructural changes in SBR materials. The model serves as a valuable tool for predicting material responses under various conditions, advancing the design and engineering of SBR-based products across industries.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Abstract

Details

Urban Resilience: Lessons on Urban Environmental Planning from Turkey
Type: Book
ISBN: 978-1-83549-617-6

Open Access
Article
Publication date: 5 April 2024

Kai Rüdele, Matthias Wolf and Christian Ramsauer

Improving productivity and efficiency has always been crucial for industrial companies to remain competitive. In recent years, the topic of environmental impact has become…

Abstract

Purpose

Improving productivity and efficiency has always been crucial for industrial companies to remain competitive. In recent years, the topic of environmental impact has become increasingly important. Published research indicates that environmental and economic goals can enforce or rival each other. However, few papers have been published that address the interaction and integration of these two goals.

Design/methodology/approach

In this paper, we identify both, synergies and trade-offs based on a systematic review incorporating 66 publications issued between 1992 and 2021. We analyze, quantify and cluster examples of conjunctions of ecological and economic measures and thereby develop a framework for the combined improvement of performance and environmental compatibility.

Findings

Our findings indicate an increased significance of a combined consideration of these two dimensions of sustainability. We found that cases where enforcing synergies between economic and ecological effects were identified are by far more frequent than reports on trade-offs. For the individual categories, cost savings are uniformly considered as the most important economic aspect while, energy savings appear to be marginally more relevant than waste reduction in terms of environmental aspects.

Originality/value

No previous literature review provides a comparable graphical treatment of synergies and trade-offs between cost savings and ecological effects. For the first time, identified measures were classified in a 3 × 3 table considering type and principle.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 25 April 2024

Metin Uzun

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV…

Abstract

Purpose

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV) by stochastically optimizing autonomous flight control system (AFCS) parameters. For minimizing autonomous flight cost and maximizing autonomous flight performance, a stochastic design approach is benefitted over certain parameters (i.e. gains of longitudinal PID controller of a hierarchical autopilot system) meanwhile lower and upper constraints exist on these design parameters.

Design/methodology/approach

A rotary wing mini UAV is produced in drone Laboratory of Iskenderun Technical University. This rotary wing UAV has three blades main rotor, fuselage, landing gear and tail rotor. It is also able to carry slung loads. AFCS variables (i.e. gains of longitudinal PID controller of hierarchical autopilot system) are stochastically optimized to minimize autonomous flight cost capturing rise time, settling time and overshoot during longitudinal flight and to maximize autonomous flight performance. Found outcomes are applied during composing rotary wing mini UAV autonomous flight simulations.

Findings

By using stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads over previously mentioned gains longitudinal PID controller when there are lower and upper constraints on these variables, a high autonomous performance having rotary wing mini UAV is obtained.

Research limitations/implications

Approval of Directorate General of Civil Aviation in Republic of Türkiye is essential for real-time rotary wing mini UAV autonomous flights.

Practical implications

Stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads is properly valuable for recovering autonomous flight performance cost of any rotary wing mini UAV.

Originality/value

Establishing a novel procedure for improving autonomous flight performance cost of a rotary wing mini UAV carrying slung loads and introducing a new process performing stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads meanwhile there exists upper and lower bounds on design variables.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 19 October 2023

Łukasz Kurowski and Paweł Smaga

Financial stability has become a focal point for central banks since the global financial crisis. However, the optimal mix between monetary and financial stability policies…

Abstract

Purpose

Financial stability has become a focal point for central banks since the global financial crisis. However, the optimal mix between monetary and financial stability policies remains unclear. In this study, the “soft” approach to such policy mix was tested – how often monetary policy (in inflation reports) analyses financial stability issues. This paper aims to discuss the aforementioned objective.

Design/methodology/approach

A total of 648 inflation reports published by 11 central banks from post-communist countries in 1998-2019 were reviewed using a text-mining method.

Findings

Results show that financial stability topics (mainly cyclical aspects of systemic risk) on average account for only 2%of inflation reports’ content. Although this share has grown somewhat since the global financial crisis (in CZ, HU and PL), it still remains at a low level. Thus, not enough evidence was found on the use of a “soft” policy mix in post-communist countries.

Practical implications

Given the strong interactions between price and financial stability, this paper emphasizes the need to increase the attention of monetary policymakers to financial stability issues.

Originality/value

The study combines two research areas, i.e. monetary policy and modern text mining techniques on a sample of post-communist countries, something which to the best of the authors’ knowledge has not been sufficiently explored in the literature before.

Details

Central European Management Journal, vol. 32 no. 1
Type: Research Article
ISSN: 2658-0845

Keywords

Article
Publication date: 6 February 2024

Farshid Rashidiyan, Seyed Rasoul Mirghaderi, Saeed Mohebbi and Sina Kavei

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed…

Abstract

Purpose

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed within these beams. The findings contribute to the understanding of their behaviour under seismic loads and offer insights into their potential for enhancing the lateral resistance of the structure. The abstract of the study highlights the significance of corners in structural plans, where non-coaxial columns, diagonal elements or beams deviating from a straight path are commonly observed. Typically, these non-straight beams are connected to the columns using pinned connections, despite their unknown seismic behaviour. Recognizing the importance of generating plastic hinges in special moment resisting frames and the lack of previous research on the involvement of these non-straight beams, this study aims to address this knowledge gap.

Design/methodology/approach

This study examines the seismic behaviour and plastic hinge formation of non-straight beams in steel structures. Non-straight beams are beams that connect non-coaxial columns and diagonal elements, or deviate from a linear path. They are usually pinned to the columns, and their seismic contribution is unknown. A critical case with a 12-m non-straight beam is analysed using Abaqus software. Different models are created with varying cross-section shapes and connection types between the non-straight beams. The models are subjected to lateral monotonic and cyclic loads in one direction. The results show that non-straight beams increase the lateral stiffness, strength and energy dissipation of the models compared to disconnected beams that act as two cantilevers.

Findings

The analysis results reveal several key findings. The inclusion of non-straight beams in the models leads to increased lateral stiffness, strength and energy dissipation compared to the scenario where the beams are disconnected and act as two cantilever beams. Plastic hinges are formed at both ends of the non-straight beam when a 3% drift is reached, contributing to energy damping and introducing plasticity into the structure. These results strongly suggest that non-straight beams play a significant role in enhancing the lateral resistance of the system. Based on the seismic analysis results, this study recommends the utilization of non-straight beams in special moment frames due to the formation of plastic hinges within these beams and their effective participation in resisting lateral seismic loads. This research fills a critical gap in understanding the behaviour of non-straight beams and provides valuable insights for structural engineers involved in the design and analysis of steel structures.

Originality/value

The authors believe that this research will greatly contribute to the knowledge and understanding of the seismic performance of non-straight beams in steel structures.

Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2023

Yuzhen Zhao, Mingxu Zhao, Huimin Zhang, Xiangrong Zhao, Yang Zhao, Zhun Guo, Jianjing Gao, Cheng Ma and Yongming Zhang

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Abstract

Purpose

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Design/methodology/approach

A series of novel symmetric and asymmetric compounds possessing third-order NLO properties were synthesized using 1,3,5-tribromobenzene as the basis. The photophysical and electrochemical properties, as well as the click reactions, were characterized by means of UV–VIS–NIR absorption spectroscopy and cyclic voltammetry.

Findings

The donor–acceptor chromophores were inserted into compound, making the molecule to have a broader absorption in the near-infrared regions and a narrower optical and electrochemical band gap. It also formed an electron-delocalized organic system, which has larger effects on achieving a third-order NLO response. The third-order NLO phenomenon of benzene ring complexes was experimentally studied at 532 nm using Z-scan technology, and some compounds showed the expected NLO properties.

Originality/value

The click products exhibit more NLO phenomena by performing different click combinations to the side groups, opening new perspectives on using the system in a variety of photoelectric applications.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 25 April 2024

Armando Urdaneta Montiel, Emmanuel Vitorio Borgucci Garcia and Segundo Camino-Mogro

This paper aims to determine causal relationships between the level of productive credit, real deposits and money demand – all of them in real terms – and Gross National Product…

Abstract

Purpose

This paper aims to determine causal relationships between the level of productive credit, real deposits and money demand – all of them in real terms – and Gross National Product between 2006 and 2020.

Design/methodology/approach

The vector autoregressive technique (VAR) was used, where data from real macroeconomic aggregates published by the Central Bank of Ecuador (BCE) are correlated, such as productive credit, gross domestic product (GDP) per capita, deposits and money demand.

Findings

The results indicate that there is no causal relationship, in the Granger sense, between GDP and financial activity, but there is between the growth rate of real money demand per capita and the growth rate of total real deposits per capita.

Originality/value

The study shows that bank credit mainly finances the operations of current assets and/or liabilities. In addition, economic agents use the banking system mainly to carry out transactional and precautionary activities.

Details

Journal of Economics, Finance and Administrative Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2077-1886

Keywords

Article
Publication date: 16 April 2024

Luna Leoni

This paper aims to develop a conceptual framework that jointly considers Environmental, Social and Governance (ESG) factors and organisational resilience (OR) components to…

Abstract

Purpose

This paper aims to develop a conceptual framework that jointly considers Environmental, Social and Governance (ESG) factors and organisational resilience (OR) components to ameliorate organisations' understanding of sustainability’s overall requirements and related decision-making processes.

Design/methodology/approach

This paper combines ESG and OR through a 3x3 conceptual matrix, where ESG factors are listed along the vertical axis and OR components along the horizontal axis. This results in nine quadrants, which have been read according to two arrangements: (1) static, looking at the specific characteristics of each single quadrant, and (2) dynamic, investigating the relationships between the different quadrants according to the system theory (ST) lens.

Findings

The integration between ESG and OR results in nine organisational typologies, each characterised by a specific focus: (1) green visioning, (2) eco ethos, (3) climate guard, (4) inclusive strategy, (5) empathy ethos, (6) community shield, (7) ethical blueprint, (8) integrity ethos and (9) compliance guard. These typologies and related focuses determine the different strategic options of organisations, the decision-making emphasis concerning ESG factors and OR components and the organisation’s behaviour concerning its internal and external environment. According to ST, the nine typologies interact with each other, emphasising the existence of interconnectedness, interdependence and cascading effects between ESG and OR.

Originality/value

The paper represents a unique attempt to interrelate ESG factors and OR components according to a ST lens, emphasising the dynamic nature of their interactions and organisations’ need for continuous adaptation and learning to make decisions that create sustainable long-term value.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

1 – 10 of 158