Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 29 August 2023

Yangsheng Ye, Degou Cai, Qianli Zhang, Shaowei Wei, Hongye Yan and Lin Geng

This method will become a new development trend in subgrade structure design for high speed railways.

Abstract

Purpose

This method will become a new development trend in subgrade structure design for high speed railways.

Design/methodology/approach

This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China, Japan, France, Germany, the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.

Findings

It is found that in foreign countries, the layered reinforced structure is generally adopted for the subgrade bed of high speed railways, and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed, while the simple structure is adopted in China; in foreign countries, different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice, while in China, compaction coefficient, subsoil coefficient and dynamic deformation modulus are adopted for such evaluation; in foreign countries, the subgrade top deformation control method, the subgrade bottom deformation control method, the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways, while in China, dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design. However, the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.

Originality/value

This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 29 November 2018

Aref Mehditabar and Gholam H. Rahimi

This study aims to explain the characterization of cyclic behavior of a tube made of functionally graded material (FGM) under different combinations of internal pressure and cyclic

Abstract

Purpose

This study aims to explain the characterization of cyclic behavior of a tube made of functionally graded material (FGM) under different combinations of internal pressure and cyclic through-thickness temperature gradients.

Design/methodology/approach

The normality rule, nonlinear kinematic hardening Chaboche model and Von Mises yield criterion were used to model the constitutive behavior of an FG tube in the incremental form. The material properties and hardening parameters of the Chaboche model vary according to the power-law function in the radial direction. The backward Euler integration scheme combined with return mapping algorithm which relies on the solution of a nonlinear equation performs the numerical procedure. The algorithm is implemented within the user subroutine UMAT in ABAQUS/standard.

Findings

The published works on FG components considering only the mechanical and physical properties as a function of spatial coordinate and nonlinear kinematic hardening parameters have not been considered to be changed continuously from one surface to another. Motivated by this, the present paper has deliberately been targeted to tackle this kind of problem to simulate the cyclic behavior of an FG tube as accurately as possible. In addition, to classify various behaviors the FG tube under cyclic thermomechanical loadings, Bree’s interaction diagram as an essential tool in designing of the FG pressure vessels in many engineering sectors is presented.

Originality/value

Provides a detailed description of the FG parameters of Chaboche kinematic hardening parameters in the adopted constitutive equations. In this paper, the significant effects of internal pressure values, kinematic hardening models and also FG inhomogeneity index related to the hardening rule parameters on plastic deformation of the FG tube are illustrated. Finally, the various cyclic behaviors of the FG tube under different combinations of thermomechanical loading are fully explored.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 September 2021

Hemanth Kumar Chinthapalli and Anil Agarwal

Earthquake tremors not only increase the chances of fire ignition but also hinder the fire-fighting efforts due to the damage to the lifelines of a city. Most of the international…

Abstract

Purpose

Earthquake tremors not only increase the chances of fire ignition but also hinder the fire-fighting efforts due to the damage to the lifelines of a city. Most of the international codes have independent recommendations for structural safety against earthquake and fire. However, the possibility of a multi-hazard event, such as fire following an earthquake is seldom addressed.

Design/methodology/approach

This paper presents an experimental study of Reinforced Concrete (RC) columns in post-earthquake fire (PEF) conditions. An experimental approach is proposed that allows the testing of a column instead of a full structural frame. This approach allows us to control the loading and boundary conditions individually and facilitates the testing under a variety of these conditions. Also, it allows the structure to be tested until failure. The role of parameters, such as earthquake intensity, axial load ratio and the ductile detailing of the column on the earthquake damage and subsequently the fire performance of the structure, is studied in this research. Six RC column specimens are tested under a sequence of quasi-static earthquake loading, followed by combined fire and axial compression loading conditions.

Findings

The experiment results indicate that ductile detailed columns subjected to 4% or less lateral drift did not lose significant load-carrying capacity in fire conditions. A lateral drift of 6% caused significant damage to the columns and reduced the load-carrying capacity in fire conditions. The level of the axial load acting on the column at the time of earthquake loading was found to have a very significant effect on the extent of damage and reduction in column load capacity in fire conditions. The columns that were not detailed for a ductile behavior observed a more significant reduction in axial load carrying capacity in fire conditions.

Research limitations/implications

This study is limited to columns of 230 mm size due to the limitations of the test setup. The applicability of these findings to larger column sections needs to be verified by developing a numerical analysis methodology and simulating other post-earthquake-fire tests available in the literature.

Originality/value

The experimental procedure proposed in this paper offers an alternative to the testing of a complete structural frame system for PEF behavior. In addition to the ease of conducting the tests, the procedure also allows much better control over the heating, structural loading and boundary conditions.

Details

Journal of Structural Fire Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 March 1990

E.E. de Kluizenaar

In Part 1, background information on mechanical properties and metallurgy of solder alloys and soldered joints has been presented. In Part 2, mechanisms of damage and degradation…

Abstract

In Part 1, background information on mechanical properties and metallurgy of solder alloys and soldered joints has been presented. In Part 2, mechanisms of damage and degradation of components and soldered joints during soldering, transport and field life have been discussed, the most important mechanism being low cycle fatigue of the solder metal. In this third part, the determination of the fatigue life expectancy of soldered joints is discussed. Accelerated testing of fatigue is needed, as the possibilities of calculations are strongly limited. A temperature cycle test under specified conditions is proposed as a standard. A model is worked out for the determination of the acceleration factor of this test. A compilation of a number of solder fatigue test results, generated in the author's company, is presented.

Details

Soldering & Surface Mount Technology, vol. 2 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 15 October 2018

Hesheng Tang, Dawei Li, Lixin Deng and Songtao Xue

This paper aims to develop a comprehensive uncertainty quantification method using evidence theory for Park–Ang damage index-based performance design in which epistemic…

Abstract

Purpose

This paper aims to develop a comprehensive uncertainty quantification method using evidence theory for Park–Ang damage index-based performance design in which epistemic uncertainties are considered. Various sources of uncertainty emanating from the database of the cyclic test results of RC members provided by the Pacific Earthquake Engineering Research Center are taken into account.

Design/methodology/approach

In this paper, an uncertainty quantification methodology based on evidence theory is presented for the whole process of performance-based seismic design (PBSD), while considering uncertainty in the Park–Ang damage model. To alleviate the burden of high computational cost in propagating uncertainty, the differential evolution interval optimization strategy is used for efficiently finding the propagated belief structure throughout the whole design process.

Findings

The investigation results of this paper demonstrate that the uncertainty rooted in Park–Ang damage model have a significant influence on PBSD design and evaluation. It might be worth noting that the epistemic uncertainty present in the Park–Ang damage model needs to be considered to avoid underestimating the true uncertainty.

Originality/value

This paper presents an evidence theory-based uncertainty quantification framework for the whole process of PBSD.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 March 2019

Jozef Čerňan, Karol Semrád, Katarína Draganová and Miroslava Cúttová

The purpose of this study is to improve life prediction of certain components. Fatigue of the high-stressed structural elements is an essential parameter that affects the lifetime…

Abstract

Purpose

The purpose of this study is to improve life prediction of certain components. Fatigue of the high-stressed structural elements is an essential parameter that affects the lifetime of such components. In particular, aviation engines are devices whose failure due to fatigue failure of one of the important components can lead to fatal consequences.

Design/methodology/approach

In this study, two analyses in the turbine disk of the jet engine during the simulated operating load were performed: The first one was the analysis of the heat-induced stresses using the finite element method. The goal of the second analysis was to determine the residual fatigue strength of a loaded disk by the software tool using the Palmgren - Miner Linear Damage Theory.

Findings

The results showed a high degree of similarity with the real tests performed on the aircraft engine and revealed the weak points in the design of the jet engine.

Research limitations/implications

It should be mentioned that without appropriate experiments, results of this analysis could not be verified.

Practical implications

These results are helpful in the re-designing of the jet engines to increase their technical feasibility.

Originality/value

Such analysis has been realized in the DV-2 jet engine research and development program for the first time in the history of jet engine manufacturing process in Slovakia and countries of Eastern Europe region.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 23 May 2022

Yangsheng Ye, Degou Cai, Lin Geng, Hongye Yan, Junkai Yao and Feng Chen

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under…

Abstract

Purpose

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under cyclic load.

Design/methodology/approach

According to the basic framework of critical state soil mechanics and in view of the characteristics of the coarse-grained soil filler for the HSR subgrade to bear the train vibration load repeatedly for a long time, the hyperbolic empirical relationship between particle breakage and plastic work was derived. Considering the influence of cyclic vibration time and stress ratio, the particle breakage correction function of coarse-grained soil filler for the HSR subgrade under cyclic load was proposed. According to the classical theory of plastic mechanics, the shearing dilatation equation of the coarse-grained soil filler for the HSR subgrade considering particle breakage was modified and obtained. A semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the HSR subgrade under cyclic load was further established. The backward Euler method was used to discretize the constitutive equation, build a numerical algorithm of “elastic prediction and plastic modification” and make a secondary development of the program to solve the cyclic compaction model.

Findings

Through the comparison with the result of laboratory triaxial test under the cyclic loading of coarse-grained soil filler for the HSR subgrade, the accuracy and applicability of the cyclic compaction model were verified. Results show that the model can accurately predict the cumulative deformation characteristics of coarse-grained soil filler for the HSR subgrade under the train vibration loading repeatedly for a long time. It considers the effects of particle breakage and stress ratio, which can be used to calculate and analyze the stress and deformation evolution law of the subgrade structure for HSR.

Originality/value

The research can provide a simple and practical method for calculating deformation of railway under cyclic loading.

Article
Publication date: 12 November 2010

A.D. Drozdov

The purpose of this paper is to develop a constitutive model in cyclic viscoplasticity of perfluoroelastomers that accounts for the Mullins effect and to determine adjustable…

Abstract

Purpose

The purpose of this paper is to develop a constitutive model in cyclic viscoplasticity of perfluoroelastomers that accounts for the Mullins effect and to determine adjustable parameters in the stress‐strain relations by fitting observations in mechanical tests.

Design/methodology/approach

A perfluoroelastomer with a complicated internal structure is modeled as an equivalent incompressible, permanent, non‐affine network of chains with constrained mobility. Its viscoplastic response at finite strains is treated as sliding of junctions between chains with respect to their reference positions. Damage accumulation is associated with acceleration of plastic flow of junctions driven by growth of free volume. Stress‐strain relations are derived by using the Clausius‐Duhem inequality.

Findings

Constitutive equations are developed that correctly describe the mechanical behavior of perfluoroelastomers under cyclic loading with stress‐ and strain‐controlled deformation programs and arbitrary numbers of cycles. Adjustable parameters in the stress‐strain relations are found by matching experimental data in uniaxial tensile tests. Numerical simulation demonstrates that the model adequately predicts characteristic features of the Mullins effect.

Originality/value

A constitutive model is derived that can be applied for description of the viscoplastic response in perfluoroelastomers at cyclic loading with complicated deformation programs and prediction of their time to failure under fatigue conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 June 2013

A.D. Drozdov and N. Dusunceli

The purpose of this paper is to compare mechanical response of polypropylene in multi‐cycle tensile tests with strain‐controlled and mixed deformation programs and to develop…

Abstract

Purpose

The purpose of this paper is to compare mechanical response of polypropylene in multi‐cycle tensile tests with strain‐controlled and mixed deformation programs and to develop constitutive equations that describe quantitatively the experimental data.

Design/methodology/approach

Multi‐cycle tensile tests are performed on isotactic polypropylene with strain‐controlled (oscillations between fixed maximum and minimum strains) and mixed (oscillations between a fixed maximum strain and the zero minimum stress) programs. A constitutive model is derived in cyclic viscoelasticity and viscoplasticity of semicrystalline polymers, and its parameters are found by fitting observations. The effect of damage accumulation of material parameters is analyzed numerically.

Findings

The model predicts accurately mechanical behavior of polypropylene in tests with numbers of cycles strongly exceeding those used to determine its parameters. In the regime of developed damage, material constants in the stress‐strain relations are independent of deformation program.

Originality/value

A novel constitutive model is derived in cyclic viscoelastoplasticity of semicrystalline polymers and comparison of its adjustable parameters is performed for different deformation programs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 January 2008

Daiva Juodsnukytė, Virginija Daukantienė and Matas Gutauskas

This paper aims to develop the methodology for the imitation of exploitation conditions of textile products as well as to determine the exploitation peculiarities of…

Abstract

Purpose

This paper aims to develop the methodology for the imitation of exploitation conditions of textile products as well as to determine the exploitation peculiarities of high‐performance fabrics for outdoor clothing producible in Lithuania.

Design/methodology/approach

Static‐ and dynamic‐cyclic loading was applied for the imitation of exploitation conditions as well as for the investigation of the changes in specimen geometrical parameters.

Findings

The differences in the parameters of textile material stability determined under dry and wet cyclic specimen deformation were determined. The investigation results presented show that the parameters of air permeability can be used for the determination of changes in textile product shapes due to their cyclic washing as well as to the other kinds of wet technological treatment, especially in these cases when the small areas of product material are deformed.

Practical implications

The problems concerned with the methodology for the evaluation of exploitation stability of high‐performance fabrics (woven and knitted) for outdoor clothing are analyzed in this research.

Originality/value

In most cases, the exploitation behaviour of textile materials is investigated under uniaxial or static biaxial deformation. For better imitation of real exploitation conditions of textiles the new testing methodology based on two testing methods was established (original device for punch deformation working in creep mode as well as using wet and dry specimens; device ARRV for cyclic fatigue).

Details

International Journal of Clothing Science and Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 1000