Search results

1 – 10 of over 8000
Open Access
Article
Publication date: 14 March 2022

Mitja Garmut and Martin Petrun

This paper presents a comparative study of different stator-segmentation topologies of a permanent magnet synchronous machine (PMSM) used in traction drives and their effect on…

1136

Abstract

Purpose

This paper presents a comparative study of different stator-segmentation topologies of a permanent magnet synchronous machine (PMSM) used in traction drives and their effect on iron losses. Using stator segmentation allows one to achieve more significant copper fill factors, resulting in increased power densities and efficiencies. The segmentation of the stators creates additional air gaps and changes the soft magnetic material’s material properties due to the cut edge effect. The aim of this paper is to present an in-depth analysis of the influence of stator segmentation on iron losses. The main goal was to compare various segmentation methods under equal excitation conditions in terms of their influence on iron loss.

Design/methodology/approach

A transient finite element method analysis combined with an extended iron-loss model was used to evaluate discussed effects on the stator’s iron losses. The workflow to obtain a homogenized airgap length accounting for cut edge effects was established.

Findings

The paper concludes that the segmentation in most cases slightly decreases the iron losses in the stator because of the overall reduced magnetic flux density B due to the additional air gaps in the magnetic circuit. An increase of the individual components, as well as total power loss, was observed in the Pole Chain segmentation design. In general, segmentation did not change the total iron losses significantly. However, different segmentation methods resulted in the different distortion of the magnetic field and, consequently, in different iron loss compositions. The analysed segmentation methods exhibited different iron loss behaviour with respect to the operation points of the machine. The final finding is that analysed stator segmentations had a negligible influence on the total iron loss. Therefore, applying segmentation is an adequate measure to improve PMSMs as it enables, e.g. increase of the winding fill factor or simplifying the assembly processes, etc.

Originality/value

The influence of stator segmentation on iron losses was analysed. An in-depth evaluation was performed to determine how the discussed changes influence the individual iron loss components. A workflow was developed to achieve a computationally cheap homogenized model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 June 2019

Benedikt Groschup, Silas Elfgen and Kay Hameyer

The cutting process of the electric machine laminations causes residual mechanical stress in the soft magnetic material. A local magnetic deterioration can be observed and the…

Abstract

Purpose

The cutting process of the electric machine laminations causes residual mechanical stress in the soft magnetic material. A local magnetic deterioration can be observed and the resulting local and global iron losses increase. A continuous local material model for the consideration of the changing magnetization properties has been introduced in a previous work as well as an a priori assessment of iron losses. A local iron loss calculation considering both a local magnetization and local loss parameters misses yet. The purpose of this study is to introduce a local iron loss calculation model considering both a local magnetization and local loss parameters.

Design/methodology/approach

In this paper, an approach for local iron loss simulation is developed and a comparison to the cut-edge length-dependent loss model is given. The comparison includes local loss distribution in the lamination as well as the impact on the overall motor efficiency and vehicle range in an electric vehicle driving cycle.

Findings

For an analysis of the resulting local iron loss components, both the local magnetization and iron loss parameters must be considered using physically based models. Consistently, a local iron loss model is presented in the work. The developed model can be used to gain detailed information of the local loss distribution inside the machine. The comparability of this local iron loss with the cut-edge length approach for overall system characteristics, e.g. efficiency or driving range, is shown.

Originality/value

A local iron loss simulation approach is a physical accurate model to describe the influence of cutting techniques on electric machine characteristics. A comparison with the less complicated a priori assessment gives detailed information about the necessity of the local model under consideration of the given problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 6 July 2012

402

Abstract

Details

Managing Service Quality: An International Journal, vol. 22 no. 4
Type: Research Article
ISSN: 0960-4529

Content available
Article
Publication date: 16 November 2012

162

Abstract

Details

Managing Service Quality: An International Journal, vol. 22 no. 6
Type: Research Article
ISSN: 0960-4529

Content available
Article
Publication date: 31 August 2012

197

Abstract

Details

Managing Service Quality: An International Journal, vol. 22 no. 5
Type: Research Article
ISSN: 0960-4529

Article
Publication date: 24 June 2019

Jan Karthaus, Silas Elfgen and Kay Hameyer

Magnetic properties of electrical steel are affected by mechanical stress. In electrical machines, influences because of manufacturing and assembling and because of operation…

Abstract

Purpose

Magnetic properties of electrical steel are affected by mechanical stress. In electrical machines, influences because of manufacturing and assembling and because of operation cause a mechanical stress distribution inside the steel lamination. The purpose of this study is to analyse the local mechanical stress distribution and its consequences for the magnetic properties which must be considered when designing electrical machines.

Design/methodology/approach

In this paper, an approach for modelling stress-dependent magnetic material properties such as magnetic flux density using a continuous local material model is presented.

Findings

The presented model shows a good approximation to measurement results for mechanical tensile stress up to 100 MPa for the studied material.

Originality/value

The presented model allows a simple determination of model parameters by using stress-dependent magnetic material measurements. The model can also be used to determine a scalar mechanical stress distribution by using a known magnetic flux density distribution.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1981

David Cox

An appreciation of the material from which modern printed circuit board drills are fabricated and an understanding of the salient geometric design features incorporated in such…

Abstract

An appreciation of the material from which modern printed circuit board drills are fabricated and an understanding of the salient geometric design features incorporated in such tooling will help those involved with the drilling process in determining optimum operating procedures and in identifying the underlying causes of hole deficiencies.

Details

Circuit World, vol. 7 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 27 January 2022

Martin Marco Nell, Marius Franck and Kay Hameyer

For the electromagnetic simulation of electrical machines, models with different ranges of values, levels of detail and accuracies are used. In this paper, numerical and two…

Abstract

Purpose

For the electromagnetic simulation of electrical machines, models with different ranges of values, levels of detail and accuracies are used. In this paper, numerical and two analytical models of an induction machine (IM) are analysed with respect to these aspects. The purpose of the paper is to use these analyses to discuss the suitability of the models for the simulation of various physical quantities of an IM.

Design/methodology/approach

An exemplary IM is simulated using the two-dimensional numerical finite element method, an analytical harmonic wave model (HWM) and an extended HWM. The simulation results are analyzed among themselves in terms of their level of detail and accuracy. Furthermore, the results of operating map simulations are compared with measured operating maps of the exemplary machine, and the accuracy of the simulation approaches is discussed in the context of measurement deviations and uncertainties.

Findings

The difference in the accuracy of the machine models depends on the physical quantity of interest. Therefore, the choice of the simulation method depends on the nature of the problem and the expected range of results. For modeling global machine quantities, such as mean torque or losses, analytical methods such as the HWM s are sufficient in many applications because the simulation results are within the range of measurement accuracy of current measurement systems. Analytical methods are also suitable for local flux density curves under certain conditions. However, for the simulation of the influence of local physical effects on the machine behavior and of temporally highly resolved quantities in saturated operating points, the accuracy of the analytical models decreases and the use of the finite element method becomes necessary.

Originality/value

In this paper, an extension of the HWM is used to calculate the IM, which, in contrast to the HWM, models the saturation. Furthermore, the simulation results of the different electromagnetic IM models are put into the context of the uncertainty of a measurement of several identical IMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 February 2023

Mahyar Khorasani, Ian Gibson, Amir Hossein Ghasemi, Elahe Hadavi and Bernard Rolfe

The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing…

1090

Abstract

Purpose

The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing technique, which can be applied to a very wide range of materials, with particular emphasis on metals. In this paper, the governing principles of both laser-based subtractive of metals (LB-SM) and laser-based powder bed fusion (LB-PBF) of metallic materials are discussed and evaluated in terms of performance and capabilities. Using the principles of both laser-based methods, some new potential hybrid additive manufacturing options are discussed.

Design methodology approach

Production characteristics, such as surface quality, dimensional accuracy, material range, mechanical properties and applications, are reviewed and discussed. The process parameters for both LB-PBF and LB-SM were identified, and different factors that caused defects in both processes are explored. Advantages, disadvantages and limitations are explained and analyzed to shed light on the process selection for both additive and subtractive processes.

Findings

The performance of subtractive and additive processes is highly related to the material properties, such as diffusivity, reflectivity, thermal conductivity as well as laser parameters. LB-PBF has more influential factors affecting the quality of produced parts and is a more complex process. Both LB-SM and LB-PBF are flexible manufacturing methods that can be applied to a wide range of materials; however, they both suffer from low energy efficiency and production rate. These may be useful when producing highly innovative parts detailed, hollow products, such as medical implants.

Originality value

This paper reviews the literature for both LB-PBF and LB-SM; nevertheless, the main contributions of this paper are twofold. To the best of the authors’ knowledge, this paper is one of the first to discuss the effect of the production process (both additive and subtractive) on the quality of the produced components. Also, some options for the hybrid capability of both LB-PBF and LB-SM are suggested to produce complex components with the desired macro- and microscale features.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 22 July 2014

Sainath Suryanarayanan and Daniel Lee Kleinman

This paper utilizes controversies over the role of a set of insecticides in mass honey bee die-offs in two different national contexts – France and the United States – in order to…

Abstract

This paper utilizes controversies over the role of a set of insecticides in mass honey bee die-offs in two different national contexts – France and the United States – in order to understand the science-state nexus in a comparative manner. On the one hand, the French government in 1999 and 2004 suspended the commercial use of the insecticidal products that beekeepers suspected of causing the honey bee declines. On the other hand, the US government has to date refused to heed beekeepers’ calls to limit the usage of the very same set of insecticides. We examine why the governments of France and the United States came to contrasting conclusions regarding broadly similar technoscientific issues. The divergent outcomes, we argue, are not simply the result of predetermined differences in the two states’ regulatory paradigms (with France being “precautionary,” and the United States adhering to a “sound science” approach), but are underpinned by divergent forms of beekeepers’ resistance. The paper further sheds light on non-state actors’ use of science and state to contest state (in)action by analyzing how historically influenced differences in state structures, the relational dynamics of beekeepers’ and farmers’ organizations, and the epistemic cultures of honey bee knowledge production, shaped different forms of resistance and influence in France and the United States.

Details

Fields of Knowledge: Science, Politics and Publics in the Neoliberal Age
Type: Book
ISBN: 978-1-78350-668-2

1 – 10 of over 8000