Search results

1 – 10 of 85
Article
Publication date: 2 April 2024

Yi Liu, Rui Ning, Mingxin Du, Shuanghe Yu and Yan Yan

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork…

Abstract

Purpose

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork production, the development of efficient and robust meat cutting algorithms are hot issues. The uncertain and dynamic nature of the online porcine belly cutting imposes a challenge for the robot to identify and cut efficiently and accurately. Based on the above challenges, an online porcine belly cutting method using 3D laser point cloud is proposed.

Design/methodology/approach

The robotic cutting system is composed of an industrial robotic manipulator, customized tools, a laser sensor and a PC.

Findings

Analysis of experimental results shows that by comparing with machine vision, laser sensor-based robot cutting has more advantages, and it can handle different carcass sizes.

Originality/value

An image pyramid method is used for dimensionality reduction of the 3D laser point cloud. From a detailed analysis of the outward and inward cutting errors, the outward cutting error is the limiting condition for reducing the segments by segmentation algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 October 2023

Shu-Hao Chang

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for…

Abstract

Purpose

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for semiconductor lasers, analyzing the technological position of developers has become increasingly critical. Therefore, the purpose of this study is to adopt the technological position analysis to identify mainstream technologies and developments relevant to semiconductor lasers.

Design/methodology/approach

Correspondence analysis and k-means cluster analysis, which are data mining techniques, are used to reveal strategic groups of major competitors in the semiconductor laser market according to their Patent Cooperation Treaty (PCT) patent applications.

Findings

The results of this study reveal that PCT patent applications are generally obtained for masers, optical elements, semiconductor devices and methods for measuring and that technology developers have varying technological positions.

Originality/value

Through position analysis, this study identifies the technological focuses of different manufacturers to obtain information that can guide the allocation of research and development resources.

Details

International Journal of Innovation Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 20 December 2023

Fadwa M. Al Chamaa, Ahmad El Ghor and Elie Hantouche

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Abstract

Purpose

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Design/methodology/approach

A total of nine steel plates with a single bolt hole are tested. The single bolt holes are fabricated using three different hole-making processes: drilling, waterjet and plasma. Among the nine steel plates, three fabricated specimens are control specimens and are tested at ambient temperature. The six remaining steel plates with a single bolt hole are subjected to a complete heating-cooling cycle and then monotonically loaded until failure. The six fabricated specimens are first heated up to two different temperatures 800 and 925 °C, and then cooled back to the ambient prior to loading.

Findings

The results show that after being exposed to post-fire temperatures (800 and 925 °C), the maximum decrease in strength of the S235 steel plate was 6% (at 925 °C), 14% (at 925 °C) and 22% (at 800 °C) when compared to the results of ambient specimens for waterjet, drilled and plasma bolt holes, respectively. For post-fire temperature tests, drilled and waterjet bolt hole-making processes result in having approximately the same load-displacement response, and both have larger strength and ductility than those obtained using plasma cutting.

Originality/value

This study provides preliminary data to guide the steel designers and fabricators in choosing the most suitable hole-making process for fire applications and to quantify the post-fire reduction in capacity of S235 plates.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 1 June 2023

Satish Kumar, Arun Gupta, Anish Kumar, Pankaj Chandna and Gian Bhushan

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially…

Abstract

Purpose

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially affects the accuracy. The workpiece temperature (WT), as well as the responses like material removal rate (MRR) and surface roughness (SR) for input parameters like cutting speed (CS), feed rate (F), depth-of-cut (DOC), step over (SO) and tool diameter (TD), becomes critical for sustaining the accuracy of the thin walls.

Design/methodology/approach

Response surface methodology was used to make 46 tests. To convert the multi-character problem into a single-character problem, the weightage was assessed using the entropy approach and the grey relational coefficient (GRC) was determined. To investigate the connection among input parameters and single-objective (GRC), a fuzzy mathematical modelling technique was used. The optimal performance of process parameters was estimated by grey relational entropy grade (GREG)-fuzzy and genetic algorithm (GA) optimization.

Findings

SR was found to be a significant process parameter, with CS, feed and DOC, respectively. Similarly, F, DOC and TD were found to be significant process parameters with MRR, respectively, and F, DOC, SO and TD were found to be significant process parameters with WT, respectively. GREG-fuzzy-GA found more suitable for minimizing the WT with the constraint s of SR and MRR and provide maximum desirability of 0.665. The projected and experimental values have a good agreement, with a standard error of 5.85%, and so the responses predicted by the suggested method are better optimized.

Originality/value

The GREG-fuzzy-GA is a new hybrid technique for analysing Inconel625 behaviour during machining in a 2.5D milling process.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 October 2023

Ahmet Selcuk Yalcin, Huseyin Selcuk Kilic and Emre Cevikcan

The purpose of this article is to develop a new model called strategy segmentation methodology (SSM) by combining the Kraljic portfolio matrix (KPM) and the supplier relationship…

Abstract

Purpose

The purpose of this article is to develop a new model called strategy segmentation methodology (SSM) by combining the Kraljic portfolio matrix (KPM) and the supplier relationship model (SRM) so that the buyer company can effectively conduct its relations with its suppliers.

Design/methodology/approach

The importance weights of the criteria defining the dimensions of each model are calculated with the single-valued neutrosophic analytical hierarchy process (SVN-AHP) method. Subsequently, the derived importance weights are employed in the single-valued neutrosophic technique for order preference by similarity to ideal solution (SVN-TOPSIS) method to obtain the scores of the suppliers and their supplied items. In order to illustrate the feasibility of the proposed methodology, a case study in the machinery industry is performed with the related comparative analysis.

Findings

The implementation of SSM enables to formulate various strategies to manage suppliers taking into account the items they procure, their capabilities and performance and the supplier–buyer relationship strength. Based on the proposed strategies, it is concluded that the firm in the case study should terminate its relationship with six of its suppliers.

Originality/value

Although KPM has become the basis of purchasing strategies for various businesses, it neglects the characteristics of suppliers and the buyer–supplier relationship. In this study, KPM is integrated with the SRM approach presented by Olsen and Ellram (1997) to overcome these disadvantages of KPM. The novel integration of the two approaches enables the realization of a robust and reliable supplier classification model.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 November 2022

Megan Burfoot, Ali GhaffarianHoseini, Amirhosein Ghaffarianhoseini and Nicola Naismith

To maximise acoustic comfort in a classroom, the acoustic conditions of the space should be variable. So, the optimal acoustic state also changes when the classroom changes from a…

Abstract

Purpose

To maximise acoustic comfort in a classroom, the acoustic conditions of the space should be variable. So, the optimal acoustic state also changes when the classroom changes from a study environment into a lecture environment. Passive Variable Acoustic Technology (PVAT) alters a room’s Reverberation Time (RT) by changing the total sound absorption in a room. The purpose of this paper is to evaluate the improvements to classroom acoustic comfort when using PVAT.

Design/methodology/approach

The study is conducted in an existing tertiary classroom at Auckland University of Technology, New Zealand. The PVAT is prototyped, and the RTs are measured according to international standards before and after classroom installation. The acoustic measurement method used is a cost-effective application tool where pre- and post-conditions are of primary concern.

Findings

PVAT is found to offer statistically significant improvements in RT, but the key benefits are realised in its’ ability to vary RT for different classroom situations. It is predicted that the RT recommendations for two room types outlined in the acoustic standard AS/NZS 2107:2016 are satisfied when using PVAT in a single classroom space. By optimising RT, the acoustic comfort during both study and lecture is significantly improved.

Originality/value

When PVAT is combined with an intelligent system – Intelligent Passive Room Acoustic Technology (IPRAT) – it can detect sound waves in real time to identify the optimal RT. This paper details a pilot case study that works towards quantifying the benefits of IPRAT, by prototyping and testing the PVAT component of the system.

Highlights

  1. A pilot case study outlines the development and test of a variable acoustic prototype in a tertiary classroom

  2. A method is adopted to measure acoustic conditions, using three under-researched Android applications

  3. The benefits of PVAT are realised in its ability to vary RT by adjusting the prototypes’ sound absorption

  4. By using PVAT in a single space, the recommended RTs for two room types outlined in the acoustic standard AS/NZS 2107:2016 can be satisfied

  5. The improvements in acoustic comfort due to PVAT are statistically significant

A pilot case study outlines the development and test of a variable acoustic prototype in a tertiary classroom

A method is adopted to measure acoustic conditions, using three under-researched Android applications

The benefits of PVAT are realised in its ability to vary RT by adjusting the prototypes’ sound absorption

By using PVAT in a single space, the recommended RTs for two room types outlined in the acoustic standard AS/NZS 2107:2016 can be satisfied

The improvements in acoustic comfort due to PVAT are statistically significant

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 February 2024

Steven Alter

The lack of conceptual approaches for organizing and expressing capabilities, usage and impact of intelligent machines (IMs) in work settings is an obstacle to moving beyond…

Abstract

Purpose

The lack of conceptual approaches for organizing and expressing capabilities, usage and impact of intelligent machines (IMs) in work settings is an obstacle to moving beyond isolated case examples, domain-specific studies, 2 × 2 frameworks and expert opinion in discussions of IMs and work. This paper's purpose is to illuminate many issues that often are not addressed directly in research, practice or punditry related to IMs. It pursues that purpose by presenting an integrated approach for identifying and organizing important aspects of analysis and evaluation related to IMs in work settings. 

Design/methodology/approach

This paper integrates previously published ideas related to work systems (WSs), smart devices and systems, facets of work, roles and responsibilities of information systems, interactions between people and machines and a range of criteria for evaluating system performance.

Findings

Eight principles outline a straightforward and flexible approach for analyzing and evaluating IMs and the WSs that use them. Those principles are based on the above ideas.

Originality/value

This paper provides a novel approach for identifying design choices for situated use of IMs. The breadth, depth and integration of this approach address a gap in existing literature, which rarely aspires to this paper’s thoroughness in combining ideas that support the description, analysis, design and evaluation of situated uses of IMs.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 6 February 2024

Irene Pasina, Emanuela Corti, Taher Eldanaf and Dalal Abdullah

This paper explores the impact of interior design education and its effectiveness in the work environment for women in the United Arab Emirates (UAE), as they are the primary…

Abstract

Purpose

This paper explores the impact of interior design education and its effectiveness in the work environment for women in the United Arab Emirates (UAE), as they are the primary recipients of interior design programs. The analysis focuses on the role of women in interior design in the Gulf countries and the update of an interior design program curriculum as part of the continuous development program requested by the UAE Commission of Academic Accreditation (CAA) of the national Ministry of Education (MoE).

Design/methodology/approach

The research adopts different methodologies: an academic annual effectiveness report (AER), requirements of relevant international and regional accreditation bodies and a double round of surveys and interviews with female students, alumni, instructors and professionals.

Findings

The article collects and compares data from different perspectives, from the academic to the professional point of view, discussing challenges and opportunities for female students in contemporary interior design in the UAE. After collecting the necessary feedback on the strengths and weaknesses of the bachelor’s program, a set of informed recommendations has been developed, approved and introduced during the academic year 2022/2023. At the end of the year, a second feedback from faculty and external reviewers was gathered and analyzed, providing preliminary insights into the effectiveness of the curricular revisions and highlighting the significant benefits for the female students.

Originality/value

The paper discusses the comprehensive and up-to-date combination of traditional elements, innovative approaches and sustainable practices, alongside the strategic planning of the United Arab Emirates, proposed to enhance female learning experiences while reinforcing their skills and competencies for their future careers.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

1 – 10 of 85