Search results

1 – 10 of over 56000
Article
Publication date: 13 June 2016

Pradeep Kumar Patil and A I Khandwawala

The purpose of this paper is to measure the effect of rake angle on cutting forces on the rake face of single point cutting tool with two cutting conditions. The experimental…

220

Abstract

Purpose

The purpose of this paper is to measure the effect of rake angle on cutting forces on the rake face of single point cutting tool with two cutting conditions. The experimental setup has been developed to measure the cutting forces. The study aims to put forward the optimum cutting condition, which improves the product quality, surface finish, productivity and tool life.

Design/methodology/approach

The load cell-based tool dynamometer has been developed to measure the cutting forces. The experiments have performed on the mild steel bar of hardness 60 BHN. The friction and the normal forces have measured in dry cutting condition and with rust-X cutting fluids. The cutting forces for these two cutting conditions have calculated with constant depth of cut, speed and feed with different rake angles in the range of degrees 6, 7, 8, 9, 10, 11, 12, 15 and 20.

Findings

The experimental observations shows the variations of friction and normal forces with different cutting conditions and parameters. It shows the friction force on rake face increase and the normal force on the rake face decreases with increase the rake angle.

Research limitations/implications

The observations has done only for mild steel of hardness 60 BHN. It can also be perform on different materials and for different cutting conditions.

Practical implications

The experimental setup developed in this research can be used in the manufacturing industry. It can help to decide and maintain the optimum cutting conditions.

Originality/value

The observations have been made on an experimental setup, which fulfills the actual working/cutting conditions as per the use in industries.

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 August 2022

Shailendra Chauhan, Rajeev Trehan and Ravi Pratap Singh

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting

Abstract

Purpose

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting parameters. The various impact of cutting parameters on chip morphology was also analyzed. Superalloys, often referred to as heat-resistant alloys, have exceptional tensile, ductile and creep strength at high operating temperatures and good fatigue strength, and often better corrosion and oxidation resistance at extreme heat. Because of these qualities, these alloys account for more than half of the weight of sophisticated aviation, biomedical and thermal power plants today. Inconel X-750 is a high-temperature nickel-based superalloy that is hard to machine because of its extensive properties. At last, the discussion regarding the tool wear mechanism was analyzed and discussed in this article.

Design/methodology/approach

The machining parameters for the study are cutting speed, feed rate and depth of cut. One factor at a time approach was implemented to investigate the effect of cutting parameters on the cutting forces, surface roughness and material removal rate. The scatter plot was plotted between cutting parameters and target functions (cutting forces, surface roughness and material removal rate). The six levels of cutting speed, feed rate and depth of cut were taken as cutting parameters.

Findings

The cutting forces are primarily affected by the cutting parameters, tool geometry, work material etc. The maximum forces Fx were encountered at 10 mm/min cutting speed, 0.15 mm/rev feed rate and 0.4 mm depth of cut, further maximum forces Fy were attained at 10 mm/min cutting speed, 0.25 mm/rev feed rate and 0.4 mm depth of cut and maximum forces Fz were attained at 50 mm/min cutting speed, 0.05 mm/rev feed rate and 0.4 mm depth of cut. The maximum surface roughness value was observed at 40 mm/min cutting speed, 0.15 mm/rev feed rate and 0.5 mm depth of cut.

Originality/value

The effect of machining parameters on cutting forces, surface roughness, chip morphology and tool wear for milling of Inconel X-750 high-temperature superalloy is being less researched in the present literature. Therefore, this research paper will give a direction for researchers for further studies to be carried out in the domain of high-temperature superalloys. Furthermore, the different tool wear mechanisms at separate experimental trials have been explored to evaluate and validate the process performance by conducting scanning electron microscopy analysis. Chip morphology has also been evaluated and analyzed under the variation of selected process inputs at different levels.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 April 2013

Emel Kuram, Babur Ozcelik, Bilgin Tolga Simsek and Erhan Demirbas

The purpose of this paper is to investigate the performances of vegetable based cutting fluids by comparing tool life, surface roughness and cutting force during end milling of…

Abstract

Purpose

The purpose of this paper is to investigate the performances of vegetable based cutting fluids by comparing tool life, surface roughness and cutting force during end milling of AISI 304 stainless steel. In the experiments, three different vegetable based cutting fluids developed from sunflower and canola oils (SCF‐II with 8% extreme pressure (EP), CCF‐II without EP and CCF‐II with 8% EP) and a commercial type of semi‐synthetic cutting fluid were used. Cutting fluid was applied to the cutting zone via two nozzles.

Design/methodology/approach

Effects of different cutting speeds (100, 150 and 200 m/min) and different feed rates (0.2, 0.25 and 0.3 mm/rev) on tool life, surface roughness and cutting force in milling of AISI 304 stainless steel were investigated. Depth of cut and step over were kept constant as 0.3 mm and 10 mm at both conditions, respectively.

Findings

Results indicated that CCF‐II with 8% EP cutting fluid showed better performance than the others.

Originality/value

In this study, effect of extreme pressure additive on milling performance was investigated.

Details

Industrial Lubrication and Tribology, vol. 65 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 January 2024

Young Jin Shin, Ebrahim Farrokh, Jaehoon Jung, Jaewon Lee and Hanbyul Kang

Despite the many advantages this type of equipment offers, there are still some major drawbacks. Linear cutting machine (LCM) cannot accurately simulate the true rock-cutting

Abstract

Purpose

Despite the many advantages this type of equipment offers, there are still some major drawbacks. Linear cutting machine (LCM) cannot accurately simulate the true rock-cutting process as 1. it does not account for the circular path along which tunnel boring machine (TBM) disk cutters cut the tunnel face, 2. it does not accurately model the position of a disk cutter on the cutterhead, 3. it cannot perfectly replicate the rotational speed of a TBM. To enhance the knowledge of these issues and in order to mimic the real rock-cutting process, a new lab testing equipment was developed by Hyundai Engineering and Construction.

Design/methodology/approach

A new testing machine called rotary cutting machine (RCM) is designed to simulate the excavation process of hard-rock TBMs and includes features such as TBM cutterhead, RPM simulation, constant normal force mode and constant penetration rate mode. Two sets of tests were conducted on Hwandeung granite using different disk cutter sizes to analyze the cutting forces in various excavation modes. The results are analyzed using statistical analysis and dimensional analysis. A new model is generated using dimensional analysis, and its results are compared against the results of actual cases.

Findings

The effectiveness of the new RCM test was demonstrated in its ability to apply various modes of excavation. Initial analysis of chip size revealed that the thickness of the chips is largely dependent on the cutter spacing. Tests with varying RPM showed that an increase in RPM results in an increase in the normal force and rolling force. The cutting coefficient (CC) demonstrated a linear correlation with penetration. The optimal specific energy is achieved at an S/p ratio of around 15. However, a slightly lower S/p ratio can also be used in the design if the cutter specifications permit. A dimensional analysis was utilized to develop a new RCM model based on the results from approximately 1200 tests. The model's applicability was demonstrated through a comparison of TBM penetration data from 26 tunnel projects globally. Results indicated that the predicted penetration rates by the RCM test model were in good agreement with actual rates for the majority of cases. However, further investigation is necessary for softer rock types, which will be conducted in the future using concrete blocks.

Originality/value

The originality of the research lies in the development of Hyundai Engineering and Construction’s advanced full-scale laboratory rotary cutting machine (RCM), which accurately replicates the excavation process of hard-rock tunnel boring machines (TBMs). The study provides valuable insights into cutting forces, chip size, specific energy, RPM and excavation modes, enhancing understanding and decision-making in hard-rock excavation processes. The research also presents a new RCM model validated against TBM penetration data, demonstrating its practical applicability and predictive accuracy.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 May 2023

Jiafeng Lu, Xiaolin Deng, Jing Tang and Xiaoyun Chen

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear…

Abstract

Purpose

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear and poor surface quality. This paper aims to use new cooling methods for processing this problem.

Design/methodology/approach

Different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Findings

The results show that with the increase of liquid nitrogen flow, the cutting force decreases, especially the Fx component, which decreases by 10%. When the liquid nitrogen flow reaches 8 L/min, the effect of increasing the liquid nitrogen flow on reducing the cutting force becomes smaller. The cutting force reduced by up to 15%, and the tool life increased up to 20% using liquid nitrogen cryogenic cooling than in cutting liquids cooling. When minimal quantities of lubricant (MQL) was added, the cutting force was reduced by 23%, and the tool life increased by 25%. When the cutting speed increases from 100 m/min to 250 m/min, the cutting force with cutting liquid cooling does not change significantly while the cutting force with liquid nitrogen cooling decreases with the cutting speed increasing. It shows that liquid nitrogen cooling is more suitable for high-speed machining. After the cutting length reaches 66 m, the surface roughness of the workpiece using liquid nitrogen cooling method larger than that of the cutting liquid cooling method. When MQL is added into liquid nitrogen, the lubrication performance is improved, and the surface roughness of the workpiece is reduced about 8%.

Originality/value

Many studies had focused on the improvement of tool life and surface quality by different cooling methods, or on the injection process and chip mechanism. However, there are few relevant studies on the variation of cooling and lubrication properties with the change of cutting length in liquid nitrogen cryogenic processing. In this research, different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0053/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 March 2023

Yang Li, Jinke Gao, Jianing Zhou, Tong Zhu and Zhilei Jiang

Cutting force prediction is pretty important for manufacture management. Thus, the purpose of this paper is to obtain the cutting force of the machining process with high…

Abstract

Purpose

Cutting force prediction is pretty important for manufacture management. Thus, the purpose of this paper is to obtain the cutting force of the machining process with high efficiency and low cost. A method based on the improved auto regressive moving average (ARMA) model is proposed for cutting force predictions in milling process.

Design/methodology/approach

First, classification and normalization are made for initial cutting force. Second, the cutting force sequences are compressed followed singular and valid value removed. At last, the improved ARMA model is used for cutting force fit and extrapolation considered the time domain characteristics.

Findings

A series of cutting force with the spindle speed 595r/min is carried out in the research. It is showed that the mean absolute percentage error value of cutting force extrapolation results which is based on the improved model is smaller. The percentage value is approximately 5.80%. Then the root mean square error test value is only 72.49, which is smaller than that with other traditional method, such as hidden Markov model. The extrapolation results with the proposed model performed good consistency and accuracy in terms of peaks, valleys and volatility compared with the experiment results.

Originality/value

The proposed method that is based on the improved ARMA model can be used for cutting force predictions conveniently. And the predictions can be used for improving the qualities in milling process.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 September 2006

O.C. Mendes, R.F. Ávila, A.M. Abrão, Pedro Reis and J. Paulo Davim

The knowledge over the performance of cutting fluids when applied under different machining conditions (such as distinct work material and cutting parameters) is critical in order…

1147

Abstract

Purpose

The knowledge over the performance of cutting fluids when applied under different machining conditions (such as distinct work material and cutting parameters) is critical in order to improve the efficiency of most machining operations. This paper is concerned with the performance of cutting fluids employed under two distinct machining operations involving aluminium alloys: drilling of AA 1050‐O aluminium applying cutting fluid as a mist and turning of AA 6262‐T6 aluminium alloy using cutting fluids (as a flood) with distinct extreme pressure additives (chlorine, sulphur and phosphor).

Design/methodology/approach

This work reports on a experimental study of the performance of cutting fluids when machining aluminium alloys.

Findings

The results indicated an increase in the flow rate of the mist led to lower feed forces but higher torque, power consumption and specific cutting pressure in the drilling operation (AA 1050‐O aluminium). The surface finish was not drastically affected by the cutting fluid flow rate. When turning AA 6162‐T6 aluminium alloy, in general, best results were observed using 10 per cent fluid concentration applied at the tool‐workpiece interface. The cutting fluid containing chlorine as extreme pressure additive produced lower cutting forces and better surface finish at high cutting speed and low feed rate and depth of cut.

Originality/value

The novel element of this paper is the use of minimal lubrication (drilling) and cutting fluids with distinct extreme pressure (turning).

Details

Industrial Lubrication and Tribology, vol. 58 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 June 2017

Quentin Cosson-Coche, Olivier Cahuc, Philippe Darnis, Raynald Laheurte, Denis Teissandier and Didier Chabirand

The purpose of this paper is to understand the impact of the cutting forces on the quality of pieces in industrial cutting of multi-ply textile material. It also tries to…

Abstract

Purpose

The purpose of this paper is to understand the impact of the cutting forces on the quality of pieces in industrial cutting of multi-ply textile material. It also tries to establish a cutting model that can simulate the cutting forces in order to understand the behaviour of the blade.

Design/methodology/approach

Working on an industrial machine, a cutting head with an oscillating knife is instrumented with different sensors. Using this equipment, cutting forces can be analysed experimentally while the fabric is being cut along a straight line.

Findings

A model of the physical phenomena of the cutting forces is proposed, taking different parameters into account such as the geometry of the blade, the properties of the material being cut and the parameters of the cut. The simulated forces and the monitored forces are compared and parameters for minimising the cutting forces of fabrics are deduced.

Research limitations/implications

Due to the wide diversity of fabrics, all with different mechanical characteristics, this research only began with the study of denim in a straight cut.

Originality/value

This paper describes an instrumentation of automatic cutting head for textile. It manages to simulate the action of the fabrics on the blade through effort monitoring and help in the understanding of the multi-ply cutting process.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 September 2020

Gökhan Sur and Ömer Erkan

Drilling of carbon fiber reinforced plastic (CFRP) composite plates with high surface quality are of great importance for assembly operations. The article aims to optimize the…

Abstract

Purpose

Drilling of carbon fiber reinforced plastic (CFRP) composite plates with high surface quality are of great importance for assembly operations. The article aims to optimize the drill geometry and cutting parameters to improve the surface quality of CFRP composite material. In this study, CFRP plates were drilled with uncoated carbide drill bits with standard and step geometry. Thus, the effects of standard and step drill bits on surface quality have been examined comparatively. In addition, optimum output parameters were determined by Taguchi, ANOVA and multiple decision-making methods.

Design/methodology/approach

Drill bit point angles were selected as 90°, 110° and 130°. In cutting parameters, three different cutting speeds (25, 50 and 75 m/min) and three different feeds (0.1, 0.15 and 0.2 mm/rev) were determined. L18 orthogonal sequence was used with Taguchi experimental design. Three important output parameters affecting the surface quality are determined as thrust force, surface roughness and delamination factor. For each output parameter, the effects of drill geometry and cutting parameters were evaluated. Input parameters affecting output parameters were analyzed using the ANOVA method. Output parameters were estimated by creating regression equations. Weights were determined using the analytic hierarchy process (AHP) method, and multiple output parameters were optimized using technique for order preference by Similarity to An ideal solution (TOPSIS).

Findings

It has been determined from the experimental results that step drills generate smaller thrust forces than standard drills. However, it has been determined that it creates greater surface roughness and delamination factor. From the Taguchi analysis, the optimum input parameters for Fz step tool geometry, 90° point angle, 75 m/min cutting speed and 0.1 mm/rev feed. For Fd, are standard tool geometry, 90° point angle, 25 m/min cutting speed and 0.1 mm/rev feed and for Ra, are standard tool geometry, 130° point angle, 25 m/min cutting speed and 0.1 mm/rev feed. ANOVA analysis determined that the most important parameter on Fd is the tip angle, with 56.33%. The most important parameter on Ra and Fz was found to be 40.53% and 77.06% tool geometry, respectively. As a result of the optimization with multiple criteria decision-making methods, the test order that gave the best surface quality was found as 4–1-9–5-8–17-2–13-6–16-18–15-11–10-3–12-14. The results of the test number 4, which gives the best surface quality, namely, the thrust force is 91.86 N, the surface roughness is 0.75 µm and the delamination factor is 1.043. As a result of experiment number 14, which gave the worst surface quality, the thrust force was 149.88 N, the surface roughness was 3.03 µm and the delamination factor was 1.163.

Practical implications

Surface quality is an essential parameter in the drilling of CFRP plates. Cutting tool geometry comes first among the parameters affecting this. Therefore, different cutting tool geometries are preferred. A comparison of these cutting tools is discussed in detail. On the other hand, thrust force, delamination factor and surface roughness, which are the output parameters that determine the surface quality, have been optimized using the TOPSIS and AHP method. In this way, this situation, which seems complicated, is presented in a plain and understandable form.

Originality/value

In the experiments, cutting tools with different geometries are included. Comparatively, its effects on surface quality were examined. The hole damage mechanism affecting the surface quality is discussed in detail. The results were optimized by evaluating Taguchi, ANOVA, TOPSIS and AHP methods together.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 June 2023

Shucai Yang, Shiwen Xing, Yang Yu, Pei Han, Chaoyang Guo and Lukai Liu

It was verified that the micro-texture in the front and back of the tool at the same time had a positive effect on improving the milling behavior and surface quality of the tool…

Abstract

Purpose

It was verified that the micro-texture in the front and back of the tool at the same time had a positive effect on improving the milling behavior and surface quality of the tool. The purpose of this study is to explore the rationality of simultaneous placement of micro-textures on the front and rear surfaces of ball-end milling cutters, analyze the influence of micro-texture parameters on tool milling behavior and workpiece surface quality, reveal its internal mechanism, and obtain the best micro-texture parameters by optimization.

Design/methodology/approach

First, the mechanism of micro-texture is studied based on the energy loss model. Second, the orthogonal experiment is designed to analyze the influence of micro-texture parameters on tool milling behavior and reveal its mechanism by combining simulation technology and cutting experiment. Finally, the parameters are optimized based on the artificial bee colony algorithm.

Findings

The results show that the simultaneous placement of micro-texture on the rake face and flank face of the tool has a positive effect on improving the milling behavior and surface quality of the tool. Taking milling force, tool wear and surface roughness as the evaluation criteria, the optimal parameter combination is obtained: the rake face micro-texture diameter is 50 µm, the distance from the micro-texture is 200 µm and the distance from the cutting edge is 110 µm; the diameter of the micro-textured flank is 40 µm, the distance from the micro-texture is 170 µm and the distance from the cutting edge is 130 µm.

Originality/value

Taking milling force, tool wear and surface roughness as the evaluation criteria, the optimal parameter combination is obtained: the rake face micro-texture diameter is 50 µm, the distance from the micro-texture is 200 µm and the distance from the cutting edge is 110 µm; the diameter of the micro-textured flank is 40 µm, the distance from the micro-texture is 170 µm and the distance from the cutting edge is 130 µm, which provides theoretical support for the further study of the micro-textured tool.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0022/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 56000