Search results

1 – 10 of 152
Article
Publication date: 4 November 2021

Qianyong Chen, Jinghua Xu and Shuyou Zhang

Compared with cusp height and area deviation ratio, volume error (VE) caused by the layer height could represent the stair-case effect more comprehensively. The proposed relative…

Abstract

Purpose

Compared with cusp height and area deviation ratio, volume error (VE) caused by the layer height could represent the stair-case effect more comprehensively. The proposed relative volume error (RVE)-based adaptive slicing method takes VE rather than cusp height as slicing criteria, which can improve part surface quality for functionalized additive manufacturing.

Design/methodology/approach

This paper proposes a volumetric adaptive slicing method of manifold mesh for rapid prototyping based on RVE. The pre-height sequences of manifold mesh are first preset to reduce the SE by dividing the whole layer sequence into several parts. A breadth-first search-based algorithm has been developed to generate a solid voxelization to get VE. A new parameter RVE is proposed to evaluate the VE caused by the sequence of the layer positions. The RVE slicing is conducted by iteratively adjusting the layer height sequences under different constraint conditions.

Findings

Three manifold models are used to verify the proposed method. Compared with uniform slicing with 0.2 mm layer height, cusp height-based method and area deviation-based method, the standard deviations of RVE of all three models are improved under the proposed method. The surface roughness measured by the confocal laser scanning microscope proves that the proposed RVE method can greatly improve part surface quality by minimizing RVE.

Originality/value

This paper proposes an RVE-based method to balance the surface quality and print time. RVE could be calculated by voxelized parts with required accuracy at a very fast speed by parallel.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 1997

R.L. Hope, R.N. Roth and P.A. Jacobs

Presents an adaptive slicing procedure for improving the geometric accuracy of layered manufacturing techniques which, unlike previous procedures, uses layers with sloping…

1320

Abstract

Presents an adaptive slicing procedure for improving the geometric accuracy of layered manufacturing techniques which, unlike previous procedures, uses layers with sloping boundary surfaces that closely match the shape of the required surface. This greatly reduces the stair case effect which is characteristic of layered components with square edges. Considers two measures of error, and outlines a method of predicting these measures for sloping layer surfaces. To cater for different manufacturing requirements, presents a method to produce parts with either an inside or outside tolerance, or a combination of both. Finally, considers some problems associated with surface joins, vertices, and inflection points and proposes some solutions.

Details

Rapid Prototyping Journal, vol. 3 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 August 2022

Xiaoqi Wang, Jianfu Cao and Ye Cao

Adaptive slicing is a key step in 3D printing as it is closely related to the building time and the surface quality. This study aims to develop an adaptive layering algorithm that…

Abstract

Purpose

Adaptive slicing is a key step in 3D printing as it is closely related to the building time and the surface quality. This study aims to develop an adaptive layering algorithm that can coordinate the optimization of printing quality and efficiency to meet different printing needs.

Design/methodology/approach

A multiobjective optimization model is established for printing quality, printing time and layer height based on the variation of surface features, profile slope and curvature of the model. The optimal solution is found by an improved method combining Newton's method and gradient method and adapts to different printing requirements by adjusting the parameter thresholds.

Findings

Several benchmarks are applied to verify this new method. The proposed method has also been compared with the uniform layering method, it reduces the volume error by 46.4% and shortens the printing time by 28.1% and is compared with five existing adaptive layering methods to demonstrate its superior performance.

Originality/value

Compared with other methods with only one layered result, this method is a demand-oriented algorithm that can obtain different results according to different needs and it can reach a trade-off between the building time and the surface quality.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 May 2018

Jiawei Feng, Jianzhong Fu, Zhiwei Lin, Ce Shang and Bin Li

T-spline is the latest powerful modeling tool in the field of computer-aided design. It has all the merits of non-uniform rational B-spline (NURBS) whilst resolving some flaws in…

Abstract

Purpose

T-spline is the latest powerful modeling tool in the field of computer-aided design. It has all the merits of non-uniform rational B-spline (NURBS) whilst resolving some flaws in it. This work applies T-spline surfaces to additive manufacturing (AM). Most current AM products are based on Stereolithograph models. It is a kind of discrete polyhedron model with huge amounts of data and some inherent defects. T-spline offers a better choice for the design and manufacture of complex models.

Design/methodology/approach

In this paper, a direct slicing algorithm of T-spline surfaces for AM is proposed. Initially, a T-spline surface is designed in commercial software and saved as a T-spline mesh file. Then, a numerical method is used to directly calculate all the slicing points on the surface. To achieve higher manufacturing efficiency, an adaptive slicing algorithm is applied according to the geometrical properties of the T-spline surface.

Findings

Experimental results indicate that this algorithm is effective and reliable. The quality of AM can be enhanced at both the designing and slicing stages.

Originality/value

The T-spline and direct slicing algorithm discussed here will be a powerful supplement to current technologies in AM.

Details

Rapid Prototyping Journal, vol. 24 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 2001

Feng Lin, Wei Sun and Yongnian Yan

A mathematical model to predict the layered process error and an optimization algorithm to define the fabricating orientation based on the minimum process error for layered…

1092

Abstract

A mathematical model to predict the layered process error and an optimization algorithm to define the fabricating orientation based on the minimum process error for layered manufacturing fabrication has been developed. Case studies to determine the preferred orientation candidates for fabricating spherical objects, cube objects and objects with irregular geometrical shapes have been conducted and the results were used to validate the sensitivity, accuracy, and capability of the developed model and optimization algorithm. Different orientation candidates determined by minimum processing error and by minimum processing time were also compared. The developed model and the optimization algorithm can be used, in conjunction with other processing parameters such as processing time and support structure, to define an optimal processing planning for layered manufacturing fabrication.

Details

Rapid Prototyping Journal, vol. 7 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 2000

Denis Cormier, Kittinan Unnanon and Ezat Sanii

Most adaptive slicing implementations assume a maximum allowable cusp height which applies to the entire part. Practically speaking, however, most parts do not have uniform cusp

Abstract

Most adaptive slicing implementations assume a maximum allowable cusp height which applies to the entire part. Practically speaking, however, most parts do not have uniform cusp height requirements. Some faces are required to be smooth while other faces are relatively unimportant. With a uniform cusp height implementation, users must specify the most stringent cusp height which applies to the entire part. However, with non‐uniform cusp height specifications, it is possible that further gains in adaptive slicing efficiency can be achieved. This paper presents an approach to specifying non‐uniform cusp height requirements. First, a procedure is developed which uses an edge finding algorithm to identify faces on the part. The faces are then rendered using the OpenGL graphics libraries, and the user is prompted to enter the maximum allowable cusp height for each highlighted face. Implementation details and test results are presented.

Details

Rapid Prototyping Journal, vol. 6 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 September 2021

Yifei Hu, Xin Jiang, Guanying Huo, Cheng Su, Hexiong Li and Zhiming Zheng

Adaptive slicing is a key step in three-dimensional (3D) printing as it is closely related to the building time and the surface quality. This study aims to develop a novel…

307

Abstract

Purpose

Adaptive slicing is a key step in three-dimensional (3D) printing as it is closely related to the building time and the surface quality. This study aims to develop a novel adaptive slicing method based on ameliorative area ratio and accurate cusp height for 3D printing using stereolithography (STL) models.

Design/methodology/approach

The proposed method consists of two stages. In the first stage, the STL model is sliced with constant layer thickness, where an improved algorithm for generating active triangular patches, the list is developed to preprocess the model faster. In the second stage, the model is first divided into several blocks according to the number of contours, then an axis-aligned bounding box-based contour matching algorithm and a polygons intersection algorithm are given to compare the geometric information between several successive layers, which will determine whether these layers can be merged to one.

Findings

Several benchmarks are applied to verify this new method. Developed method has also been compared with the uniform slicing method and two existing adaptive slicing methods to demonstrate its effectiveness in slicing.

Originality/value

Compared with other methods, the method leads to fewer layers whilst keeping the geometric error within a given threshold. It demonstrates that the proposed slicing method can reach a trade-off between the building time and the surface quality.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 July 2005

Chandan Kumar and A. Roy Choudhury

To calculate the volume deviation between a CAD model and built‐up part in 5‐axis laminated object manufacturing employing direct slicing with first‐order approximation.

1047

Abstract

Purpose

To calculate the volume deviation between a CAD model and built‐up part in 5‐axis laminated object manufacturing employing direct slicing with first‐order approximation.

Design/methodology/approach

It is proposed here that the deviation between the CAD model and the built‐up part, which is normally calculated as a linear dimension in specific 2D sections of the CAD model, be treated as a volume (as it actually is), for higher accuracy in subsequent calculations. An algorithm has been developed and implemented for identification and calculation of volume deviation, considering all possibilities.

Findings

It has been conclusively shown that volume deviation consideration results in improved feature recognition and less approximation.

Research limitations/implications

Increase in complexity of the CAD model leads to a considerable increase in the volume deviation computation time. Future research in this area would focus on optimization and calculation of the slice heights based on volume deviation.

Practical implications

Calculation of volume deviation would help eliminate the loss of intricate features in a complex surface and thus improve feature recognition. Slice height calculations based on volume deviation would reduce the deviation between the actual model and the built‐up part.

Originality/value

A new method has been developed for the calculation of volume deviation that could be implemented in the rapid prototyping software packages so as to build prototypes with higher accuracy.

Details

Rapid Prototyping Journal, vol. 11 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 1998

Kamesh Tata, Georges Fadel, Amit Bagchi and Nadim Aziz

An adaptive slicing algorithm that can vary the layer thickness in relation to local geometry is presented. The algorithm is based on three fundamental concepts: choice of…

1926

Abstract

An adaptive slicing algorithm that can vary the layer thickness in relation to local geometry is presented. The algorithm is based on three fundamental concepts: choice of criterion for accommodating complexities of surfaces, recognition of key characteristics and features of the object, and development of a grouping methodology for facets used to represent the object. Four criteria, cusp height, maximum deviation, chord length and volumetric error per unit length, are identified and the layer thickness is adjusted such that one of the four is met. Next, key characteristics of the object, such as horizontal and vertical surfaces, pointed edges and ends, are identified based on the local changes in surface complexity, and slice based feature recognition is introduced to identify the nature of a feature, protrusion or depression, by studying the slice data. Note that the present approach uses information only from the tessellated model, and thus is different from current implementations. Finally, the concept of grouping of the facets based on their vertex coordinates is developed to minimize the number of searches for possible intersection of the facets with a slice plane. The slicing algorithm is interfaced with adaptive laminated machining and the stereolithography process through a CNC post processor and a hatching algorithm respectively. A comparison of the estimated surface quality and build time indicates that adaptive slicing produces superior parts in a shorter build time. The implementation of this work is protected under US Patent laws (Patent # 5,596,504, January 1997).

Details

Rapid Prototyping Journal, vol. 4 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2003

Pulak Mohan Pandey, N. Venkata Reddy and Sanjay G. Dhande

Layered manufacturing (LM) or rapid prototyping is a process in which a part is produced using layer‐by‐layer addition of the material. In LM, slicing of the CAD model of a part…

4358

Abstract

Layered manufacturing (LM) or rapid prototyping is a process in which a part is produced using layer‐by‐layer addition of the material. In LM, slicing of the CAD model of a part to be produced is one of the important steps. Slicing of CAD model with a very small slice thickness leads to large build time. At the same time if large slice thickness is chosen, the surface finish is very bad due to staircasing. These two contradicting issues namely reduction in build time and better surface quality have been a major concern in laminated manufacturing. This contradiction has led to the development of number of slicing procedures. The present paper reviews various slicing approaches developed for tessellated as well as actual CAD models.

Details

Rapid Prototyping Journal, vol. 9 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 152